Spaces:
Sleeping
Sleeping
add interface logic and debug print and text extraction logic
Browse files- app.py +113 -18
- config.json +237 -0
app.py
CHANGED
@@ -8,6 +8,79 @@ import matplotlib.pyplot as plt
|
|
8 |
import matplotlib.patches as patches
|
9 |
import numpy as np
|
10 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
@@ -16,18 +89,19 @@ model = Florence2ForConditionalGeneration.from_pretrained("PleIAs/Florence-PDF",
|
|
16 |
processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True)
|
17 |
|
18 |
TASK_PROMPTS = {
|
19 |
-
"Caption": "<CAPTION>",
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"Object Detection": "<OD>",
|
23 |
-
"Dense Region Caption": "<DENSE_REGION_CAPTION>",
|
24 |
-
"OCR": "<OCR>",
|
25 |
-
"OCR with Region": "<OCR_WITH_REGION>",
|
26 |
-
"Region Proposal": "<REGION_PROPOSAL>"
|
27 |
}
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
33 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
@@ -65,39 +139,60 @@ def draw_ocr_bboxes(image, prediction):
|
|
65 |
|
66 |
def process_image(image, task):
|
67 |
prompt = TASK_PROMPTS[task]
|
|
|
|
|
|
|
|
|
|
|
68 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
69 |
|
|
|
|
|
|
|
70 |
generated_ids = model.generate(
|
71 |
**inputs,
|
72 |
max_new_tokens=1024,
|
73 |
num_beams=3,
|
74 |
do_sample=False
|
75 |
)
|
|
|
76 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
77 |
|
|
|
|
|
|
|
78 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
79 |
|
|
|
|
|
|
|
80 |
return parsed_answer
|
81 |
|
82 |
def main_process(image, task):
|
83 |
result = process_image(image, task)
|
84 |
-
|
85 |
if task in IMAGE_TASKS:
|
86 |
if task == "OCR with Region":
|
87 |
-
output_image = draw_ocr_bboxes(image.copy(), result[
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
else:
|
89 |
fig = plot_bbox(image, result[TASK_PROMPTS[task]])
|
90 |
output_image = fig_to_pil(fig)
|
91 |
-
|
92 |
else:
|
93 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
94 |
|
95 |
def reset_outputs():
|
96 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
97 |
|
98 |
-
with gr.Blocks(title="Florence-
|
99 |
-
gr.Markdown(
|
100 |
-
gr.Markdown(
|
101 |
|
102 |
with gr.Column():
|
103 |
image_input = gr.Image(type="pil", label="Input Image")
|
@@ -107,8 +202,8 @@ with gr.Blocks(title="Florence-2 Demo") as iface:
|
|
107 |
submit_button = gr.Button("Process")
|
108 |
reset_button = gr.Button("Reset")
|
109 |
|
110 |
-
output_image = gr.Image(label="
|
111 |
-
output_text = gr.Textbox(label="
|
112 |
|
113 |
def process_and_update(image, task):
|
114 |
if image is None:
|
|
|
8 |
import matplotlib.patches as patches
|
9 |
import numpy as np
|
10 |
import random
|
11 |
+
import json
|
12 |
+
# Load and parse the config.json file
|
13 |
+
with open("config.json", "r") as f:
|
14 |
+
config = json.load(f)
|
15 |
+
|
16 |
+
# Extract necessary variables from the config
|
17 |
+
d_model = config['text_config']['d_model']
|
18 |
+
num_layers = config['text_config']['encoder_layers']
|
19 |
+
attention_heads = config['text_config']['encoder_attention_heads']
|
20 |
+
vocab_size = config['text_config']['vocab_size']
|
21 |
+
max_length = config['text_config']['max_length']
|
22 |
+
beam_size = config['text_config']['num_beams']
|
23 |
+
dropout = config['text_config']['dropout']
|
24 |
+
activation_function = config['text_config']['activation_function']
|
25 |
+
no_repeat_ngram_size = config['text_config']['no_repeat_ngram_size']
|
26 |
+
patch_size = config['vision_config']['patch_size'][0]
|
27 |
+
temporal_embeddings = config['vision_config']['visual_temporal_embedding']['max_temporal_embeddings']
|
28 |
+
|
29 |
+
|
30 |
+
title = """# 🙋🏻♂️Welcome to Tonic's PLeIAs/📸📈✍🏻Florence-PDF"""
|
31 |
+
description = """
|
32 |
+
---
|
33 |
+
|
34 |
+
|
35 |
+
This application showcases the **PLeIAs/📸📈✍🏻Florence-PDF** model, a powerful AI system designed for both **text and image generation tasks**. The model is capable of handling complex tasks such as object detection, image captioning, OCR (Optical Character Recognition), and detailed region-based image analysis.
|
36 |
+
|
37 |
+
### **How to Use**:
|
38 |
+
1. **Upload an Image**: Select an image for processing.
|
39 |
+
2. **Choose a Task**: Pick a task from the dropdown menu, such as "Caption", "Object Detection", "OCR", etc.
|
40 |
+
3. **Process**: Click the "Process" button to let PLeIAs/📸📈✍🏻Florence-PDF analyze the image and generate the output.
|
41 |
+
4. **View Results**: Depending on the task, you’ll either see a processed image (e.g., with bounding boxes or labels) or a text-based result (e.g., a generated caption or extracted text).
|
42 |
+
|
43 |
+
You can reset the interface anytime by clicking the **Reset** button.
|
44 |
+
|
45 |
+
### **Available Tasks**:
|
46 |
+
- **✍🏻Caption**: Generate a concise description of the image.
|
47 |
+
- **📸Object Detection**: Identify and label objects within the image.
|
48 |
+
- **📸✍🏻OCR**: Extract text from the image.
|
49 |
+
- **📸Region Proposal**: Detect key regions in the image for detailed captioning.
|
50 |
+
|
51 |
+
---
|
52 |
+
|
53 |
+
### Join us :
|
54 |
+
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
55 |
+
"""
|
56 |
+
model_presentation = f"""
|
57 |
+
## PLeIAs/📸📈✍🏻Florence-PDF Model Overview
|
58 |
+
|
59 |
+
The **PLeIAs/📸📈✍🏻Florence-PDF** model is a state-of-the-art model for conditional generation tasks, designed to be highly effective for both **text** and **vision** tasks. It is built as an **encoder-decoder** architecture, which allows for enhanced flexibility and performance in generating outputs based on diverse inputs.
|
60 |
+
|
61 |
+
### Key Features
|
62 |
+
|
63 |
+
- **Model Architecture**: PLeIAs/📸📈✍🏻Florence-PDF uses an encoder-decoder structure, which makes it effective in tasks like **text generation**, **summarization**, and **translation**. It has **{num_layers} layers** for both the encoder and decoder, with a model dimension (`d_model`) of **{d_model}**.
|
64 |
+
- **Conditional Generation**: The model can generate text conditionally, with a maximum length of **{max_length} tokens** for each generated sequence, making it ideal for tasks that require concise output.
|
65 |
+
- **Beam Search**: PLeIAs/📸📈✍🏻Florence-PDFsupports **beam search** with up to **{beam_size} beams**, enabling more diverse and accurate text generation by exploring multiple potential outputs before selecting the best one.
|
66 |
+
- **Tokenization**: It includes a tokenizer with a vocabulary size of **{vocab_size} tokens**. Special tokens such as the **bos_token_id (0)** and **eos_token_id (2)** help control the generation process by marking the beginning and end of a sequence.
|
67 |
+
- **Attention Mechanism**: Both the encoder and decoder utilize **{attention_heads} attention heads** per layer, ensuring that the model can focus on relevant parts of the input when generating text.
|
68 |
+
- **Dropout and Activation**: PLeIAs/📸📈✍🏻Florence-PDF employs a **{activation_function} activation function** and a **dropout rate of {dropout}**, which enhances model performance by preventing overfitting and improving generalization.
|
69 |
+
- **Training Configuration**: The model uses **float32** precision for training, and it supports fine-tuning for specific tasks by setting `finetuning_task` appropriately.
|
70 |
+
|
71 |
+
### Vision Integration
|
72 |
+
|
73 |
+
In addition to text tasks, PLeIAs/📸📈✍🏻Florence-PDF also incorporates **vision capabilities**:
|
74 |
+
- **Patch-based Image Processing**: The vision component operates on image patches with a patch size of **{patch_size}x{patch_size}**.
|
75 |
+
- **Temporal Embedding**: Visual tasks benefit from temporal embeddings with up to **{temporal_embeddings} steps**, making Florence-2 well-suited for video analysis.
|
76 |
+
|
77 |
+
### Model Usage and Flexibility
|
78 |
+
|
79 |
+
- **No Repeat N-Grams**: To reduce repetition in text generation, the model is configured with a **no_repeat_ngram_size** of **{no_repeat_ngram_size}**, ensuring more diverse and meaningful outputs.
|
80 |
+
- **Sampling Strategies**: PLeIAs/📸📈✍🏻Florence-PDF offers flexible sampling strategies, including **top-k** and **top-p (nucleus) sampling**, allowing for both creative and constrained generation based on user needs.
|
81 |
+
|
82 |
+
📸📈✍🏻Florence-PDF is a robust model capable of handling various **text and image** tasks with high precision and flexibility, making it a valuable tool for both academic research and practical applications.
|
83 |
+
"""
|
84 |
|
85 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
86 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
89 |
processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True)
|
90 |
|
91 |
TASK_PROMPTS = {
|
92 |
+
"✍🏻Caption": "<CAPTION>",
|
93 |
+
"✍🏻✍🏻Caption": "<DETAILED_CAPTION>",
|
94 |
+
"✍🏻✍🏻✍🏻Caption": "<MORE_DETAILED_CAPTION>",
|
95 |
+
"📸Object Detection": "<OD>",
|
96 |
+
"📸Dense Region Caption": "<DENSE_REGION_CAPTION>",
|
97 |
+
"📸✍🏻OCR": "<OCR>",
|
98 |
+
"📸✍🏻OCR with Region": "<OCR_WITH_REGION>",
|
99 |
+
"📸Region Proposal": "<REGION_PROPOSAL>"
|
100 |
}
|
101 |
|
102 |
+
|
103 |
+
IMAGE_TASKS = ["📸Object Detection", "📸Dense Region Caption", "📸Region Proposal", "📸✍🏻OCR with Region"]
|
104 |
+
TEXT_TASKS = ["✍🏻Caption", "✍🏻✍🏻Caption", "✍🏻✍🏻✍🏻Caption", "📸✍🏻OCR", "📸✍🏻OCR with Region"]
|
105 |
|
106 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
107 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
|
139 |
|
140 |
def process_image(image, task):
|
141 |
prompt = TASK_PROMPTS[task]
|
142 |
+
|
143 |
+
# Print the inputs for debugging
|
144 |
+
print(f"\n--- Processing Task: {task} ---")
|
145 |
+
print(f"Prompt: {prompt}")
|
146 |
+
|
147 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
148 |
|
149 |
+
# Print the input tensors for debugging
|
150 |
+
print(f"Model Input: {inputs}")
|
151 |
+
|
152 |
generated_ids = model.generate(
|
153 |
**inputs,
|
154 |
max_new_tokens=1024,
|
155 |
num_beams=3,
|
156 |
do_sample=False
|
157 |
)
|
158 |
+
|
159 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
160 |
|
161 |
+
# Print the raw generated output for debugging
|
162 |
+
print(f"Raw Model Output: {generated_text}")
|
163 |
+
|
164 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
165 |
|
166 |
+
# Print the parsed answer for debugging
|
167 |
+
print(f"Parsed Answer: {parsed_answer}")
|
168 |
+
|
169 |
return parsed_answer
|
170 |
|
171 |
def main_process(image, task):
|
172 |
result = process_image(image, task)
|
173 |
+
|
174 |
if task in IMAGE_TASKS:
|
175 |
if task == "OCR with Region":
|
176 |
+
output_image = draw_ocr_bboxes(image.copy(), result['quad_boxes'])
|
177 |
+
text_output = result.get('recognized_text', 'No text found') # Extract recognized text
|
178 |
+
|
179 |
+
# Debugging: Print the recognized text
|
180 |
+
print(f"Recognized Text: {text_output}")
|
181 |
+
|
182 |
+
return output_image, gr.update(visible=True), text_output, gr.update(visible=True)
|
183 |
else:
|
184 |
fig = plot_bbox(image, result[TASK_PROMPTS[task]])
|
185 |
output_image = fig_to_pil(fig)
|
186 |
+
return output_image, gr.update(visible=True), None, gr.update(visible=False)
|
187 |
else:
|
188 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
189 |
|
190 |
def reset_outputs():
|
191 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
192 |
|
193 |
+
with gr.Blocks(title="PLeIAs/📸📈✍🏻Florence-PDF") as iface:
|
194 |
+
gr.Markdown(title)
|
195 |
+
gr.Markdown(description)
|
196 |
|
197 |
with gr.Column():
|
198 |
image_input = gr.Image(type="pil", label="Input Image")
|
|
|
202 |
submit_button = gr.Button("Process")
|
203 |
reset_button = gr.Button("Reset")
|
204 |
|
205 |
+
output_image = gr.Image(label="PLeIAs/📸📈✍🏻Florence-PDF", visible=False)
|
206 |
+
output_text = gr.Textbox(label="PLeIAs/📸📈✍🏻Florence-PDF", visible=True)
|
207 |
|
208 |
def process_and_update(image, task):
|
209 |
if image is None:
|
config.json
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "florence-large-ft",
|
3 |
+
"architectures": [
|
4 |
+
"Florence2ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_florence2.Florence2Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"ignore_index": -100,
|
13 |
+
"is_encoder_decoder": true,
|
14 |
+
"model_type": "florence2",
|
15 |
+
"pad_token_id": 1,
|
16 |
+
"projection_dim": 1024,
|
17 |
+
"text_config": {
|
18 |
+
"_name_or_path": "",
|
19 |
+
"activation_dropout": 0.1,
|
20 |
+
"activation_function": "gelu",
|
21 |
+
"add_bias_logits": false,
|
22 |
+
"add_cross_attention": false,
|
23 |
+
"add_final_layer_norm": false,
|
24 |
+
"architectures": null,
|
25 |
+
"attention_dropout": 0.1,
|
26 |
+
"bad_words_ids": null,
|
27 |
+
"begin_suppress_tokens": null,
|
28 |
+
"bos_token_id": 0,
|
29 |
+
"chunk_size_feed_forward": 0,
|
30 |
+
"classif_dropout": 0.1,
|
31 |
+
"classifier_dropout": 0.0,
|
32 |
+
"cross_attention_hidden_size": null,
|
33 |
+
"d_model": 1024,
|
34 |
+
"decoder_attention_heads": 16,
|
35 |
+
"decoder_ffn_dim": 4096,
|
36 |
+
"decoder_layerdrop": 0.0,
|
37 |
+
"decoder_layers": 12,
|
38 |
+
"decoder_start_token_id": 2,
|
39 |
+
"diversity_penalty": 0.0,
|
40 |
+
"do_sample": false,
|
41 |
+
"dropout": 0.1,
|
42 |
+
"early_stopping": true,
|
43 |
+
"encoder_attention_heads": 16,
|
44 |
+
"encoder_ffn_dim": 4096,
|
45 |
+
"encoder_layerdrop": 0.0,
|
46 |
+
"encoder_layers": 12,
|
47 |
+
"encoder_no_repeat_ngram_size": 0,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"exponential_decay_length_penalty": null,
|
50 |
+
"finetuning_task": null,
|
51 |
+
"forced_bos_token_id": 0,
|
52 |
+
"forced_eos_token_id": 2,
|
53 |
+
"gradient_checkpointing": false,
|
54 |
+
"id2label": {
|
55 |
+
"0": "LABEL_0",
|
56 |
+
"1": "LABEL_1",
|
57 |
+
"2": "LABEL_2"
|
58 |
+
},
|
59 |
+
"init_std": 0.02,
|
60 |
+
"is_decoder": false,
|
61 |
+
"is_encoder_decoder": true,
|
62 |
+
"label2id": {
|
63 |
+
"LABEL_0": 0,
|
64 |
+
"LABEL_1": 1,
|
65 |
+
"LABEL_2": 2
|
66 |
+
},
|
67 |
+
"length_penalty": 1.0,
|
68 |
+
"max_length": 20,
|
69 |
+
"max_position_embeddings": 1024,
|
70 |
+
"min_length": 0,
|
71 |
+
"model_type": "florence2_language",
|
72 |
+
"no_repeat_ngram_size": 3,
|
73 |
+
"normalize_before": false,
|
74 |
+
"num_beam_groups": 1,
|
75 |
+
"num_beams": 3,
|
76 |
+
"num_hidden_layers": 12,
|
77 |
+
"num_return_sequences": 1,
|
78 |
+
"output_attentions": false,
|
79 |
+
"output_hidden_states": false,
|
80 |
+
"output_scores": false,
|
81 |
+
"pad_token_id": 1,
|
82 |
+
"prefix": null,
|
83 |
+
"problem_type": null,
|
84 |
+
"pruned_heads": {},
|
85 |
+
"remove_invalid_values": false,
|
86 |
+
"repetition_penalty": 1.0,
|
87 |
+
"return_dict": true,
|
88 |
+
"return_dict_in_generate": false,
|
89 |
+
"scale_embedding": false,
|
90 |
+
"sep_token_id": null,
|
91 |
+
"suppress_tokens": null,
|
92 |
+
"task_specific_params": null,
|
93 |
+
"temperature": 1.0,
|
94 |
+
"tf_legacy_loss": false,
|
95 |
+
"tie_encoder_decoder": false,
|
96 |
+
"tie_word_embeddings": true,
|
97 |
+
"tokenizer_class": null,
|
98 |
+
"top_k": 50,
|
99 |
+
"top_p": 1.0,
|
100 |
+
"torch_dtype": null,
|
101 |
+
"torchscript": false,
|
102 |
+
"typical_p": 1.0,
|
103 |
+
"use_bfloat16": false,
|
104 |
+
"use_cache": true,
|
105 |
+
"vocab_size": 51289
|
106 |
+
},
|
107 |
+
"torch_dtype": "float32",
|
108 |
+
"transformers_version": "4.42.4",
|
109 |
+
"vision_config": {
|
110 |
+
"_name_or_path": "",
|
111 |
+
"add_cross_attention": false,
|
112 |
+
"architectures": null,
|
113 |
+
"bad_words_ids": null,
|
114 |
+
"begin_suppress_tokens": null,
|
115 |
+
"bos_token_id": null,
|
116 |
+
"chunk_size_feed_forward": 0,
|
117 |
+
"cross_attention_hidden_size": null,
|
118 |
+
"decoder_start_token_id": null,
|
119 |
+
"depths": [
|
120 |
+
1,
|
121 |
+
1,
|
122 |
+
9,
|
123 |
+
1
|
124 |
+
],
|
125 |
+
"dim_embed": [
|
126 |
+
256,
|
127 |
+
512,
|
128 |
+
1024,
|
129 |
+
2048
|
130 |
+
],
|
131 |
+
"diversity_penalty": 0.0,
|
132 |
+
"do_sample": false,
|
133 |
+
"drop_path_rate": 0.1,
|
134 |
+
"early_stopping": false,
|
135 |
+
"enable_checkpoint": false,
|
136 |
+
"encoder_no_repeat_ngram_size": 0,
|
137 |
+
"eos_token_id": null,
|
138 |
+
"exponential_decay_length_penalty": null,
|
139 |
+
"finetuning_task": null,
|
140 |
+
"forced_bos_token_id": null,
|
141 |
+
"forced_eos_token_id": null,
|
142 |
+
"id2label": {
|
143 |
+
"0": "LABEL_0",
|
144 |
+
"1": "LABEL_1"
|
145 |
+
},
|
146 |
+
"image_feature_source": [
|
147 |
+
"spatial_avg_pool",
|
148 |
+
"temporal_avg_pool"
|
149 |
+
],
|
150 |
+
"image_pos_embed": {
|
151 |
+
"max_pos_embeddings": 50,
|
152 |
+
"type": "learned_abs_2d"
|
153 |
+
},
|
154 |
+
"is_decoder": false,
|
155 |
+
"is_encoder_decoder": false,
|
156 |
+
"label2id": {
|
157 |
+
"LABEL_0": 0,
|
158 |
+
"LABEL_1": 1
|
159 |
+
},
|
160 |
+
"length_penalty": 1.0,
|
161 |
+
"max_length": 20,
|
162 |
+
"min_length": 0,
|
163 |
+
"model_type": "davit",
|
164 |
+
"no_repeat_ngram_size": 0,
|
165 |
+
"num_beam_groups": 1,
|
166 |
+
"num_beams": 1,
|
167 |
+
"num_groups": [
|
168 |
+
8,
|
169 |
+
16,
|
170 |
+
32,
|
171 |
+
64
|
172 |
+
],
|
173 |
+
"num_heads": [
|
174 |
+
8,
|
175 |
+
16,
|
176 |
+
32,
|
177 |
+
64
|
178 |
+
],
|
179 |
+
"num_return_sequences": 1,
|
180 |
+
"output_attentions": false,
|
181 |
+
"output_hidden_states": false,
|
182 |
+
"output_scores": false,
|
183 |
+
"pad_token_id": null,
|
184 |
+
"patch_padding": [
|
185 |
+
3,
|
186 |
+
1,
|
187 |
+
1,
|
188 |
+
1
|
189 |
+
],
|
190 |
+
"patch_prenorm": [
|
191 |
+
false,
|
192 |
+
true,
|
193 |
+
true,
|
194 |
+
true
|
195 |
+
],
|
196 |
+
"patch_size": [
|
197 |
+
7,
|
198 |
+
3,
|
199 |
+
3,
|
200 |
+
3
|
201 |
+
],
|
202 |
+
"patch_stride": [
|
203 |
+
4,
|
204 |
+
2,
|
205 |
+
2,
|
206 |
+
2
|
207 |
+
],
|
208 |
+
"prefix": null,
|
209 |
+
"problem_type": null,
|
210 |
+
"projection_dim": 1024,
|
211 |
+
"pruned_heads": {},
|
212 |
+
"remove_invalid_values": false,
|
213 |
+
"repetition_penalty": 1.0,
|
214 |
+
"return_dict": true,
|
215 |
+
"return_dict_in_generate": false,
|
216 |
+
"sep_token_id": null,
|
217 |
+
"suppress_tokens": null,
|
218 |
+
"task_specific_params": null,
|
219 |
+
"temperature": 1.0,
|
220 |
+
"tf_legacy_loss": false,
|
221 |
+
"tie_encoder_decoder": false,
|
222 |
+
"tie_word_embeddings": true,
|
223 |
+
"tokenizer_class": null,
|
224 |
+
"top_k": 50,
|
225 |
+
"top_p": 1.0,
|
226 |
+
"torch_dtype": null,
|
227 |
+
"torchscript": false,
|
228 |
+
"typical_p": 1.0,
|
229 |
+
"use_bfloat16": false,
|
230 |
+
"visual_temporal_embedding": {
|
231 |
+
"max_temporal_embeddings": 100,
|
232 |
+
"type": "COSINE"
|
233 |
+
},
|
234 |
+
"window_size": 12
|
235 |
+
},
|
236 |
+
"vocab_size": 51289
|
237 |
+
}
|