File size: 13,202 Bytes
266a885
 
 
91d712c
266a885
 
 
 
 
 
 
 
 
 
 
77cc5e6
 
266a885
e8edce5
eee3bd2
e8edce5
 
 
 
 
 
 
 
 
db6cbf2
 
 
 
266a885
 
 
 
91d712c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6cbf2
91d712c
 
 
 
 
 
 
 
 
 
 
 
77cc5e6
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b6b5f
 
 
 
266a885
 
 
 
 
91d712c
 
 
 
 
 
 
 
 
 
c1b6b5f
91d712c
 
 
 
 
 
c1b6b5f
 
 
 
 
 
91d712c
c1b6b5f
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8edce5
 
 
 
 
 
 
 
266a885
 
 
eee3bd2
 
266a885
 
eee3bd2
 
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee3bd2
266a885
 
 
 
eee3bd2
266a885
eee3bd2
 
 
266a885
eee3bd2
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402a6d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import spaces
import logging
import os
import pickle
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import time
import typing as tp
import subprocess as sp
import torch
import gradio as gr
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
import os
from huggingface_hub import login

title = """# 🙋🏻‍♂️Welcome to 🌟Tonic's 🎼Jasco🎶AudioCraft Demo"""
description = """Facebook presents JASCO, a temporally controlled text-to-music generation model utilizing both symbolic and audio-based conditions. JASCO can generate high-quality music samples conditioned on global text descriptions along with fine-grained local controls. JASCO is based on the Flow Matching modeling paradigm together with a novel conditioning method, allowing for music generation controlled both locally (e.g., chords) and globally (text description). [run this demo locally](https://huggingface.co./spaces/Tonic/audiocraft?docker=true) or [embed this space](https://huggingface.co./spaces/Tonic/audiocraft?embed=true) or [duplicate this space](https://huggingface.co./spaces/Tonic/audiocraft?duplicate=true) to run it privately . you can also use this demo via API by clicking the link at the bottom of the page."""
join_us = """
## Join us:
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) 
On 🤗Huggingface: [MultiTransformer](https://huggingface.co./MultiTransformer) 
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [MultiTonic](https://github.com/MultiTonic/thinking-dataset)
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

hf_token = os.environ.get('HFTOKEN')
if hf_token:
    login(token=hf_token)

MODEL = None
MAX_BATCH_SIZE = 12
INTERRUPTING = False

os.makedirs(os.path.join(os.path.dirname(__file__), "models"), exist_ok=True)

def generate_chord_mappings():
    # Define basic chord mappings
    basic_chords = ['N', 'C', 'Dm7', 'Am', 'F', 'D', 'Ab', 'Bb'] + ['UNK']
    chord_to_index = {chord: idx for idx, chord in enumerate(basic_chords)}
    
    # Save the mapping
    mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
    os.makedirs(os.path.dirname(mapping_path), exist_ok=True)
    
    with open(mapping_path, "wb") as f:
        pickle.dump(chord_to_index, f)
    
    return mapping_path

def create_default_chord_mapping():
    """Create a basic chord-to-index mapping with common chords"""
    basic_chords = [
        'N', 'C', 'Cm', 'C7', 'Cmaj7', 'Cm7',
        'D', 'Dm', 'D7', 'Dmaj7', 'Dm7',
        'E', 'Em', 'E7', 'Emaj7', 'Em7',
        'F', 'Fm', 'F7', 'Fmaj7', 'Fm7',
        'G', 'Gm', 'G7', 'Gmaj7', 'Gm7',
        'A', 'Am', 'A7', 'Amaj7', 'Am7',
        'B', 'Bm', 'B7', 'Bmaj7', 'Bm7',
        'Ab', 'Abm', 'Ab7', 'Abmaj7', 'Abm7',
        'Bb', 'Bbm', 'Bb7', 'Bbmaj7', 'Bbm7',
        'UNK'
    ]
    return {chord: idx for idx, chord in enumerate(basic_chords)}

def initialize_chord_mapping():
    """Initialize chord mapping file if it doesn't exist"""
    mapping_dir = os.path.join(os.path.dirname(__file__), "models")
    os.makedirs(mapping_dir, exist_ok=True)
    
    mapping_file = os.path.join(mapping_dir, "chord_to_index_mapping.pkl")
    
    if not os.path.exists(mapping_file):
        chord_to_index = create_default_chord_mapping()
        with open(mapping_file, "wb") as f:
            pickle.dump(chord_to_index, f)
    
    return mapping_file

def validate_chord(chord, chord_mapping):
    if chord not in chord_mapping:
        return 'UNK'
    return chord

mapping_file = initialize_chord_mapping()
os.environ['AUDIOCRAFT_CHORD_MAPPING'] = mapping_file

def chords_string_to_list(chords: str):
    if chords == '':
        return []
    chords = chords.replace('[', '').replace(']', '').replace(' ', '')
    chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
    
    # Load chord mapping
    mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
    with open(mapping_path, 'rb') as f:
        chord_mapping = pickle.load(f)
    
    return [(validate_chord(x[0], chord_mapping), float(x[1])) for x in chrd_times]

# Wrap subprocess call to clean logs
_old_call = sp.call

def _call_nostderr(*args, **kwargs):
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)

sp.call = _call_nostderr

# Preallocate process pool
pool = ProcessPoolExecutor(4)
pool.__enter__()

def interrupt():
    global INTERRUPTING
    INTERRUPTING = True

class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break

file_cleaner = FileCleaner()

def chords_string_to_list(chords: str):
    if chords == '':
        return []
    chords = chords.replace('[', '').replace(']', '').replace(' ', '')
    chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
    return [(x[0], float(x[1])) for x in chrd_times]

# Create necessary directories
os.makedirs("models", exist_ok=True)

@spaces.GPU
def load_model(version='facebook/jasco-chords-drums-400M'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        MODEL = None
        
        # Setup model directory
        model_dir = os.path.join(os.path.dirname(__file__), "models")
        os.makedirs(model_dir, exist_ok=True)
        
        # Generate and save chord mappings
        chord_mapping_path = os.path.join(model_dir, "chord_to_index_mapping.pkl")
        if not os.path.exists(chord_mapping_path):
            chord_mapping_path = generate_chord_mappings()
        
        try:
            # Initialize JASCO with the chord mapping path
            MODEL = JASCO.get_pretrained(
                version,
                device='cuda',
                chords_mapping_path=chord_mapping_path
            )
            MODEL.name = version
        except Exception as e:
            raise gr.Error(f"Error loading model: {str(e)}")
        
        if MODEL is None:
            raise gr.Error("Failed to load model")
    
    return MODEL

@spaces.GPU
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
    MODEL.set_generation_params(**gen_kwargs)
    be = time.time()

    chords = chords_string_to_list(chords)

    if melody_matrix is not None:
        melody_matrix = torch.load(melody_matrix.name, weights_only=True)
        if len(melody_matrix.shape) != 2:
            raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
        if melody_matrix.shape[0] > melody_matrix.shape[1]:
            melody_matrix = melody_matrix.permute(1, 0)

    if drum_prompt is None:
        preprocessed_drums_wav = None
        drums_sr = 32000
    else:
        drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
        if drums.dim() == 1:
            drums = drums[None]
        drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
        preprocessed_drums_wav = drums

    try:
        outputs = MODEL.generate_music(descriptions=texts, chords=chords,
                                     drums_wav=preprocessed_drums_wav,
                                     melody_salience_matrix=melody_matrix,
                                     drums_sample_rate=drums_sr, progress=progress)
    except RuntimeError as e:
        raise gr.Error("Error while generating " + e.args[0])

    outputs = outputs.detach().cpu().float()
    out_wavs = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_wavs.append(file.name)
            file_cleaner.add(file.name)
    return out_wavs

@spaces.GPU
def predict_full(model, text, chords_sym, melody_file,
                drums_file, drums_mic, drum_input_src,
                cfg_coef_all, cfg_coef_txt,
                ode_rtol, ode_atol,
                ode_solver, ode_steps,
                progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    progress(0, desc="Loading model...")
    load_model(model)

    max_generated = 0

    def _progress(generated, to_generate):
        nonlocal max_generated
        max_generated = max(generated, max_generated)
        progress((min(max_generated, to_generate), to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    
    MODEL.set_custom_progress_callback(_progress)

    drums = drums_mic if drum_input_src == "mic" else drums_file
    wavs = _do_predictions(
        texts=[text] * 2,
        chords=chords_sym,
        drum_prompt=drums,
        melody_matrix=melody_file,
        progress=True,
        gradio_progress=progress,
        cfg_coef_all=cfg_coef_all,
        cfg_coef_txt=cfg_coef_txt,
        ode_rtol=ode_rtol,
        ode_atol=ode_atol,
        euler=ode_solver == 'euler',
        euler_steps=ode_steps)

    return wavs

with gr.Blocks() as demo:
    gr.Markdown(title)
    with gr.Row():
        with gr.Column(): 
            with gr.Group():
                gr.Markdown(description)
        with gr.Column():
            with gr.Group():
                gr.Markdown(join_us)

    with gr.Row():
        with gr.Column():
            submit = gr.Button("🎼Make Music")
            interrupt_btn = gr.Button("❌Interrupt")

        with gr.Column():
            audio_output_0 = gr.Audio(label="🎼Jasco Stem 1", type='filepath')
            audio_output_1 = gr.Audio(label="🎼Jasco Stem 2", type='filepath')

    with gr.Row():
        with gr.Column():
            text = gr.Text(label="Input Text",
                          value="Strings, woodwind, orchestral, symphony.",
                          interactive=True)
        with gr.Column():
            model = gr.Radio([
                'facebook/jasco-chords-drums-400M',
                'facebook/jasco-chords-drums-1B',
                'facebook/jasco-chords-drums-melody-400M',
                'facebook/jasco-chords-drums-melody-1B'
            ], label="Model", value='facebook/jasco-chords-drums-melody-400M')

    gr.Markdown("### Chords Conditions")
    chords_sym = gr.Text(
        label="🎼Chord Progression",
        value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
        interactive=True
    )

    gr.Markdown("### 🥁Drums")
    with gr.Row():
        drum_input_src = gr.Radio(["file", "mic"], value="file", label="🥁Drums Input Source")
        drums_file = gr.Audio(sources=["upload"], type="numpy", label="🥁Drums File")
        drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="🥁🎙️Drums Mic")

    gr.Markdown("### 🎶Melody Conditions")
    melody_file = gr.File(label="Melody File")

    with gr.Row():
        cfg_coef_all = gr.Number(label="CFG ALL", value=1.25, step=0.25)
        cfg_coef_txt = gr.Number(label="CFG TEXT", value=2.5, step=0.25)
        ode_tol = gr.Number(label="ODE Tolerance", value=1e-4, step=1e-5)
        ode_solver = gr.Radio(['euler', 'dopri5'], label="ODE Solver", value='euler')
        ode_steps = gr.Number(label="Euler Steps", value=10, step=1)

    submit.click(
        fn=predict_full,
        inputs=[
            model, text, chords_sym, melody_file,
            drums_file, drums_mic, drum_input_src,
            cfg_coef_all, cfg_coef_txt,
            ode_tol, ode_tol, ode_solver, ode_steps
        ],
        outputs=[audio_output_0, audio_output_1]
    )
    
    interrupt_btn.click(fn=interrupt, queue=False)

    gr.Examples(
        examples=[
            [
                "80s pop with groovy synth bass and electric piano",
                "(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
                None,
                None,
            ],
            [
                "Strings, woodwind, orchestral, symphony.",
                "(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
                None,
                None,
            ],
        ],
        inputs=[text, chords_sym, melody_file, drums_file],
        outputs=[audio_output_0, audio_output_1]
    )

demo.queue().launch(ssr_mode=False)