Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,284 Bytes
266a885 91d712c 266a885 77cc5e6 266a885 e8edce5 eee3bd2 e8edce5 68fc76e db6cbf2 266a885 91d712c db6cbf2 91d712c 77cc5e6 266a885 c1b6b5f 266a885 91d712c c1b6b5f 91d712c c1b6b5f 91d712c c1b6b5f 266a885 e8edce5 68fc76e 266a885 eee3bd2 266a885 eee3bd2 266a885 eee3bd2 266a885 eee3bd2 266a885 eee3bd2 266a885 eee3bd2 266a885 402a6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import spaces
import logging
import os
import pickle
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import time
import typing as tp
import subprocess as sp
import torch
import gradio as gr
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
import os
from huggingface_hub import login
title = """# 🙋🏻♂️Welcome to 🌟Tonic's 🎼Jasco🎶AudioCraft Demo"""
description = """Facebook presents JASCO, a temporally controlled text-to-music generation model utilizing both symbolic and audio-based conditions. JASCO can generate high-quality music samples conditioned on global text descriptions along with fine-grained local controls. JASCO is based on the Flow Matching modeling paradigm together with a novel conditioning method, allowing for music generation controlled both locally (e.g., chords) and globally (text description). [run this demo locally](https://huggingface.co./spaces/Tonic/audiocraft?docker=true) or [embed this space](https://huggingface.co./spaces/Tonic/audiocraft?embed=true) or [duplicate this space](https://huggingface.co./spaces/Tonic/audiocraft?duplicate=true) to run it privately . you can also use this demo via API by clicking the link at the bottom of the page."""
join_us = """
## Join us:
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP)
On 🤗Huggingface: [MultiTransformer](https://huggingface.co./MultiTransformer)
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [MultiTonic](https://github.com/MultiTonic/thinking-dataset)
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
useage_instructions = """
## Overview
JASCO is a powerful text-to-music generation system that allows you to create music using text descriptions and various controls including chords, drums, and melody. This guide explains how to use each feature of the interface.
## Model Selection
Four different models are available:
1. `facebook/jasco-chords-drums-400M` - Basic model with chord and drum support (400M parameters)
2. `facebook/jasco-chords-drums-1B` - Enhanced model with chord and drum support (1B parameters)
3. `facebook/jasco-chords-drums-melody-400M` - Model with melody support (400M parameters)
4. `facebook/jasco-chords-drums-melody-1B` - Full-featured model with melody support (1B parameters)
## Input Controls
### 1. Text Description
- Enter a descriptive text about the music you want to generate
- Examples:
- "80s pop with groovy synth bass and electric piano"
- "Strings, woodwind, orchestral, symphony"
- "Jazz quartet with walking bass and smooth piano"
### 2. Chord Progression
Format: `(Chord, Time), (Chord, Time), ...`
- Time is in seconds (0-10 seconds range)
- Example: `(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)`
Supported chord types:
```python
Basic Chords: C, D, E, F, G, A, B
Minor Chords: Cm, Dm, Em, Fm, Gm, Am, Bm
Seventh Chords: C7, D7, E7, F7, G7, A7, B7
Major Seventh: Cmaj7, Dmaj7, Emaj7, Fmaj7, Gmaj7, Amaj7, Bmaj7
Minor Seventh: Cm7, Dm7, Em7, Fm7, Gm7, Am7, Bm7
Flat Chords: Ab, Bb (and their variations)
Special: N (No chord/silence)
```
### 3. Drums Input
Two options for adding drums:
1. File Upload:
- Select "file" in Drums Input Source
- Upload a WAV file containing drum patterns
- Recommended length: 2-4 bars
2. Microphone Recording:
- Select "mic" in Drums Input Source
- Record drum patterns using your microphone
- Keep recordings short and rhythmic
### 4. Melody Input
- Upload a melody salience matrix as a PyTorch tensor
- Format: Shape [n_melody_bins, T]
- File should be saved using `torch.save()`
### 5. Generation Parameters
#### Classifier Free Guidance (CFG) Controls:
- CFG ALL: Controls overall adherence to input conditions (default: 1.25)
- Range: 1.0-3.0
- Higher values = stronger conditioning
- CFG TEXT: Controls text conditioning strength (default: 2.5)
- Range: 1.0-4.0
- Higher values = closer match to text description
#### ODE Parameters:
- ODE Solver: Choose between 'euler' and 'dopri5'
- euler: Faster, less accurate
- dopri5: Slower, more accurate
- ODE Tolerance: Numerical precision (default: 1e-4)
- Lower values = higher precision, slower generation
- Euler Steps: Number of steps for euler solver (default: 10)
- Higher values = more accurate, slower generation
## Generation Process
1. Select a model based on your needs:
- Use 400M models for faster generation
- Use 1B models for higher quality
- Choose melody-enabled models if using melody input
2. Enter your text description
3. Input chord progression:
```
Example:
(C, 0.0), (Am, 2.5), (F, 5.0), (G, 7.5)
```
4. (Optional) Add drums via file upload or microphone
5. (Optional) Upload melody matrix
6. Adjust generation parameters or use defaults
7. Click "Make Musix"
## Output
- The system generates two variations of your music
- Each generation is 10 seconds long
- Output is provided as WAV files
- You can download or play directly in the interface
## Tips for Best Results
1. Text Descriptions:
- Be specific about instruments
- Include genre information
- Mention desired mood or style
2. Chord Progressions:
- Use common progressions for better results
- Space chords evenly
- Include resolution points
3. Drums:
- Use clean, clear drum patterns
- Avoid complex patterns for better results
- Keep volume levels consistent
4. Memory Management:
- The interface caches models after first use
- Switch models only when necessary
- Clear browser cache if experiencing issues
## Example Usage
```python
# Example 1: Pop Music
Text: "Upbeat pop song with electric piano and synthesizer"
Chords: (C, 0.0), (Am, 2.5), (F, 5.0), (G, 7.5)
Model: facebook/jasco-chords-drums-400M
# Example 2: Orchestral
Text: "Epic orchestral piece with strong strings and brass"
Chords: (Cm, 0.0), (G, 3.0), (Bb, 6.0), (Cm, 8.0)
Model: facebook/jasco-chords-drums-melody-1B
# Example 3: Jazz
Text: "Smooth jazz quartet with walking bass and piano"
Chords: (Dmaj7, 0.0), (Em7, 2.5), (A7, 5.0), (Dmaj7, 7.5)
Model: facebook/jasco-chords-drums-1B
```
## Error Handling
- If generation fails, try:
1. Simplifying chord progressions
2. Reducing CFG values
3. Using simpler text descriptions
4. Checking input format compliance
5. Refreshing the page
## Performance Considerations
- First generation may be slower due to model loading
- Subsequent generations with same model are faster
- Higher parameter models (1B) require more memory
- Melody-enabled models may be slower
"""
hf_token = os.environ.get('HFTOKEN')
if hf_token:
login(token=hf_token)
MODEL = None
MAX_BATCH_SIZE = 12
INTERRUPTING = False
os.makedirs(os.path.join(os.path.dirname(__file__), "models"), exist_ok=True)
def generate_chord_mappings():
# Define basic chord mappings
basic_chords = ['N', 'C', 'Dm7', 'Am', 'F', 'D', 'Ab', 'Bb'] + ['UNK']
chord_to_index = {chord: idx for idx, chord in enumerate(basic_chords)}
# Save the mapping
mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
os.makedirs(os.path.dirname(mapping_path), exist_ok=True)
with open(mapping_path, "wb") as f:
pickle.dump(chord_to_index, f)
return mapping_path
def create_default_chord_mapping():
"""Create a basic chord-to-index mapping with common chords"""
basic_chords = [
'N', 'C', 'Cm', 'C7', 'Cmaj7', 'Cm7',
'D', 'Dm', 'D7', 'Dmaj7', 'Dm7',
'E', 'Em', 'E7', 'Emaj7', 'Em7',
'F', 'Fm', 'F7', 'Fmaj7', 'Fm7',
'G', 'Gm', 'G7', 'Gmaj7', 'Gm7',
'A', 'Am', 'A7', 'Amaj7', 'Am7',
'B', 'Bm', 'B7', 'Bmaj7', 'Bm7',
'Ab', 'Abm', 'Ab7', 'Abmaj7', 'Abm7',
'Bb', 'Bbm', 'Bb7', 'Bbmaj7', 'Bbm7',
'UNK'
]
return {chord: idx for idx, chord in enumerate(basic_chords)}
def initialize_chord_mapping():
"""Initialize chord mapping file if it doesn't exist"""
mapping_dir = os.path.join(os.path.dirname(__file__), "models")
os.makedirs(mapping_dir, exist_ok=True)
mapping_file = os.path.join(mapping_dir, "chord_to_index_mapping.pkl")
if not os.path.exists(mapping_file):
chord_to_index = create_default_chord_mapping()
with open(mapping_file, "wb") as f:
pickle.dump(chord_to_index, f)
return mapping_file
def validate_chord(chord, chord_mapping):
if chord not in chord_mapping:
return 'UNK'
return chord
mapping_file = initialize_chord_mapping()
os.environ['AUDIOCRAFT_CHORD_MAPPING'] = mapping_file
def chords_string_to_list(chords: str):
if chords == '':
return []
chords = chords.replace('[', '').replace(']', '').replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
# Load chord mapping
mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
with open(mapping_path, 'rb') as f:
chord_mapping = pickle.load(f)
return [(validate_chord(x[0], chord_mapping), float(x[1])) for x in chrd_times]
# Wrap subprocess call to clean logs
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocate process pool
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def chords_string_to_list(chords: str):
if chords == '':
return []
chords = chords.replace('[', '').replace(']', '').replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
return [(x[0], float(x[1])) for x in chrd_times]
# Create necessary directories
os.makedirs("models", exist_ok=True)
@spaces.GPU
def load_model(version='facebook/jasco-chords-drums-400M'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = None
# Setup model directory
model_dir = os.path.join(os.path.dirname(__file__), "models")
os.makedirs(model_dir, exist_ok=True)
# Generate and save chord mappings
chord_mapping_path = os.path.join(model_dir, "chord_to_index_mapping.pkl")
if not os.path.exists(chord_mapping_path):
chord_mapping_path = generate_chord_mappings()
try:
# Initialize JASCO with the chord mapping path
MODEL = JASCO.get_pretrained(
version,
device='cuda',
chords_mapping_path=chord_mapping_path
)
MODEL.name = version
except Exception as e:
raise gr.Error(f"Error loading model: {str(e)}")
if MODEL is None:
raise gr.Error("Failed to load model")
return MODEL
@spaces.GPU
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(**gen_kwargs)
be = time.time()
chords = chords_string_to_list(chords)
if melody_matrix is not None:
melody_matrix = torch.load(melody_matrix.name, weights_only=True)
if len(melody_matrix.shape) != 2:
raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
if melody_matrix.shape[0] > melody_matrix.shape[1]:
melody_matrix = melody_matrix.permute(1, 0)
if drum_prompt is None:
preprocessed_drums_wav = None
drums_sr = 32000
else:
drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
if drums.dim() == 1:
drums = drums[None]
drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
preprocessed_drums_wav = drums
try:
outputs = MODEL.generate_music(descriptions=texts, chords=chords,
drums_wav=preprocessed_drums_wav,
melody_salience_matrix=melody_matrix,
drums_sample_rate=drums_sr, progress=progress)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
return out_wavs
@spaces.GPU
def predict_full(model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_rtol, ode_atol,
ode_solver, ode_steps,
progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
drums = drums_mic if drum_input_src == "mic" else drums_file
wavs = _do_predictions(
texts=[text] * 2,
chords=chords_sym,
drum_prompt=drums,
melody_matrix=melody_file,
progress=True,
gradio_progress=progress,
cfg_coef_all=cfg_coef_all,
cfg_coef_txt=cfg_coef_txt,
ode_rtol=ode_rtol,
ode_atol=ode_atol,
euler=ode_solver == 'euler',
euler_steps=ode_steps)
return wavs
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(description)
with gr.Column():
with gr.Group():
gr.Markdown(join_us)
with gr.Row():
with gr.Accordion(open=False, label="Useage Instructions"):
gr.Markdown(useage_instructions)
with gr.Row():
with gr.Column():
submit = gr.Button("🎼Make Music")
interrupt_btn = gr.Button("❌Interrupt")
with gr.Column():
audio_output_0 = gr.Audio(label="🎼Jasco Stem 1", type='filepath')
audio_output_1 = gr.Audio(label="🎼Jasco Stem 2", type='filepath')
with gr.Row():
with gr.Column():
text = gr.Text(label="Input Text",
value="Strings, woodwind, orchestral, symphony.",
interactive=True)
with gr.Column():
model = gr.Radio([
'facebook/jasco-chords-drums-400M',
'facebook/jasco-chords-drums-1B',
'facebook/jasco-chords-drums-melody-400M',
'facebook/jasco-chords-drums-melody-1B'
], label="Model", value='facebook/jasco-chords-drums-melody-400M')
gr.Markdown("### Chords Conditions")
chords_sym = gr.Text(
label="🎼Chord Progression",
value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
interactive=True
)
gr.Markdown("### 🥁Drums")
with gr.Row():
drum_input_src = gr.Radio(["file", "mic"], value="file", label="🥁Drums Input Source")
drums_file = gr.Audio(sources=["upload"], type="numpy", label="🥁Drums File")
drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="🥁🎙️Drums Mic")
gr.Markdown("### 🎶Melody Conditions")
melody_file = gr.File(label="Melody File")
with gr.Row():
cfg_coef_all = gr.Number(label="CFG ALL", value=1.25, step=0.25)
cfg_coef_txt = gr.Number(label="CFG TEXT", value=2.5, step=0.25)
ode_tol = gr.Number(label="ODE Tolerance", value=1e-4, step=1e-5)
ode_solver = gr.Radio(['euler', 'dopri5'], label="ODE Solver", value='euler')
ode_steps = gr.Number(label="Euler Steps", value=10, step=1)
submit.click(
fn=predict_full,
inputs=[
model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_tol, ode_tol, ode_solver, ode_steps
],
outputs=[audio_output_0, audio_output_1]
)
interrupt_btn.click(fn=interrupt, queue=False)
gr.Examples(
examples=[
[
"80s pop with groovy synth bass and electric piano",
"(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
None,
None,
],
[
"Strings, woodwind, orchestral, symphony.",
"(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
None,
None,
],
],
inputs=[text, chords_sym, melody_file, drums_file],
outputs=[audio_output_0, audio_output_1]
)
demo.queue().launch(ssr_mode=False) |