import spaces
import torch
import sys
import html
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
title = """# 🙋🏻♂️Welcome to🌟Tonic's🐯📏TigerAI-StructLM-7B
StructLM, is a series of open-source large language models (LLMs) finetuned for structured knowledge grounding (SKG) tasks. You can build with this endpoint using 🐯📏TigerAI-StructLM available here : [TIGER-Lab/StructLM-7B](https://huggingface.co./TIGER-Lab/StructLM-7B).
You can also use 🐯📏TigerAI-StructLM by cloning this space. Simply click here:
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co./TeamTonic) & [MultiTransformer](https://huggingface.co./MultiTransformer) Math with [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
assistant_message = """Use the information in the following table to solve the problem, choose between the choices if they are provided. table:"""
system_message = "You are an AI assistant that specializes in analyzing and reasoning over structured information. You will be given a task, optionally with some structured knowledge input. Your answer must strictly adhere to the output format, if specified."
tabular_data = "col : day | kilometers row 1 : tuesday | 0 row 2 : wednesday | 0 row 3 : thursday | 4 row 4 : friday | 0 row 5 : saturday | 0"
user_message = "Allie kept track of how many kilometers she walked during the past 5 days. What is the range of the numbers?"
model_name = 'TIGER-Lab/StructLM-7B'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True)
# model.generation_config = GenerationConfig.from_pretrained(model_name)
# model.generation_config.pad_token_id = model.generation_config.eos_token_id
@spaces.GPU
def predict(user_message, system_message="", assistant_message = "", tabular_data = "", max_new_tokens=125, temperature=0.1, top_p=0.9, repetition_penalty=1.9, do_sample=False):
prompt = f"[INST] <>\n{system_message}\n<>\n\n{assistant_message}\n\n{tabular_data}\n\n\nQuestion:\n\n{user_message}[/INST]"
inputs = tokenizer(prompt, return_tensors='pt', add_special_tokens=True)
input_ids = inputs["input_ids"].to(model.device)
output_ids = model.generate(
input_ids,
max_length=input_ids.shape[1] + max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
do_sample=do_sample
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
system_message_input = gr.Textbox(label="📉System Prompt", placeholder=system_message) # Renamed variable
assistant_message_input = gr.Textbox(label="Assistant Message", placeholder=assistant_message) # Renamed variable
tabular_data_input = gr.Textbox(label="Tabular Data", placeholder=tabular_data) # Renamed variable
user_message_input = gr.Textbox(label="🫡Enter your query here...", placeholder=user_message) # Renamed variable
with gr.Accordion("Advanced Settings"):
with gr.Row():
max_new_tokens = gr.Slider(label="Max new tokens", value=125, minimum=25, maximum=1250)
temperature = gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0)
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99)
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0)
do_sample = gr.Checkbox(label="Do sample", value=False)
output_text = gr.Textbox(label="🐯📏TigerAI-StructLM-7B")
gr.Button("Try🐯📏TigerAI-StructLM").click(
predict,
inputs=[user_message_input, system_message_input, assistant_message_input, tabular_data_input, max_new_tokens, temperature, top_p, repetition_penalty, do_sample],
outputs=output_text
)
demo.launch()