import spaces import argparse import torch import os import json from tqdm import tqdm import shortuuid from prometheus.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from prometheus.conversation import conv_templates, SeparatorStyle from prometheus.model.builder import load_pretrained_model from prometheus.utils import disable_torch_init from prometheus.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from PIL import Image import math model_path = 'kaist-ai/prometheus-vision-13b-v1.0' model_name = 'llava-v1.5' def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] @spaces.GPU def eval_model(args, model_name = model_name, model_path = model_path): disable_torch_init() tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] questions = get_chunk(questions, args.num_chunks, args.chunk_idx) answers_file = os.path.expanduser(args.answers_file) os.makedirs(os.path.dirname(answers_file), exist_ok=True) ans_file = open(answers_file, "w") for line in tqdm(questions): idx = line["question_id"] image_file = line["image"] qs = line["text"] cur_prompt = qs if model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs else: qs = DEFAULT_IMAGE_TOKEN + '\n' + qs conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() image = Image.open(os.path.join(args.image_folder, image_file)) image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor.unsqueeze(0).half().cuda(), do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, # no_repeat_ngram_size=3, max_new_tokens=1024, use_cache=True) input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[:-len(stop_str)] outputs = outputs.strip() ans_id = shortuuid.uuid() ans_file.write(json.dumps({"question_id": idx, "prompt": cur_prompt, "text": outputs, "answer_id": ans_id, "model_id": model_name, "metadata": {}}) + "\n") ans_file.flush() ans_file.close() def gradio_wrapper( image_folder, question_file, answers_file, conv_mode, num_chunks, chunk_idx, temperature, top_p, num_beams, model_path = model_path , model_name = model_name): question_file_path = os.path.join(tempfile.mkdtemp(), "question.jsonl") with open(question_file_path, "w") as f: for question in question_file: f.write(json.dumps(question) + "\n") temp_image_folder = tempfile.mkdtemp() for image_file in image_folder: image_path = os.path.join(temp_image_folder, image_file.name) image_file.save(image_path) args = argparse.Namespace( model_path=model_path, model_base=model_base, image_folder=temp_image_folder, question_file=question_file_path, answers_file=answers_file, conv_mode=conv_mode, num_chunks=num_chunks, chunk_idx=chunk_idx, temperature=temperature, top_p=top_p, num_beams=num_beams ) eval_model(args) with open(answers_file, "r") as f: answers = f.readlines() return answers iface = gr.Interface( fn=gradio_wrapper, inputs=[ gr.File(label="Image Folder", type="file", multiple=True), gr.JSON(label="Question File"), gr.Textbox(label="Answers File"), gr.Dropdown(label="Conversation Mode", choices=["llava_v1"]), gr.Slider(label="Number of Chunks", min_value=1, max_value=10, step=1, value=1), gr.Slider(label="Chunk Index", min_value=0, max_value=9, step=1, value=0), gr.Slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.2), gr.Textbox(label="Top P", value=None), gr.Slider(label="Number of Beams", min_value=1, max_value=10, step=1, value=1) ], outputs=[ gr.Textbox(label="Answers") ], title="Model Evaluation Interface", description="A Gradio interface for evaluating models." ) if __name__ == "__main__": iface.launch()