Spaces:
Runtime error
Runtime error
import spaces | |
import argparse | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
import shortuuid | |
from prometheus.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from prometheus.conversation import conv_templates, SeparatorStyle | |
from prometheus.model.builder import load_pretrained_model | |
from prometheus.utils import disable_torch_init | |
from prometheus.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
from PIL import Image | |
import math | |
model_path = 'kaist-ai/prometheus-vision-13b-v1.0' | |
model_name = 'llava-v1.5' | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
def eval_model(args, model_name = model_name, model_path = model_path): | |
disable_torch_init() | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.expanduser(args.answers_file) | |
os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
ans_file = open(answers_file, "w") | |
for line in tqdm(questions): | |
idx = line["question_id"] | |
image_file = line["image"] | |
qs = line["text"] | |
cur_prompt = qs | |
if model.config.mm_use_im_start_end: | |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
image = Image.open(os.path.join(args.image_folder, image_file)) | |
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor.unsqueeze(0).half().cuda(), | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
# no_repeat_ngram_size=3, | |
max_new_tokens=1024, | |
use_cache=True) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
ans_id = shortuuid.uuid() | |
ans_file.write(json.dumps({"question_id": idx, | |
"prompt": cur_prompt, | |
"text": outputs, | |
"answer_id": ans_id, | |
"model_id": model_name, | |
"metadata": {}}) + "\n") | |
ans_file.flush() | |
ans_file.close() | |
def gradio_wrapper( image_folder, question_file, answers_file, conv_mode, num_chunks, chunk_idx, temperature, top_p, num_beams, model_path = model_path , model_name = model_name): | |
question_file_path = os.path.join(tempfile.mkdtemp(), "question.jsonl") | |
with open(question_file_path, "w") as f: | |
for question in question_file: | |
f.write(json.dumps(question) + "\n") | |
temp_image_folder = tempfile.mkdtemp() | |
for image_file in image_folder: | |
image_path = os.path.join(temp_image_folder, image_file.name) | |
image_file.save(image_path) | |
args = argparse.Namespace( | |
model_path=model_path, | |
model_base=model_base, | |
image_folder=temp_image_folder, | |
question_file=question_file_path, | |
answers_file=answers_file, | |
conv_mode=conv_mode, | |
num_chunks=num_chunks, | |
chunk_idx=chunk_idx, | |
temperature=temperature, | |
top_p=top_p, | |
num_beams=num_beams | |
) | |
eval_model(args) | |
with open(answers_file, "r") as f: | |
answers = f.readlines() | |
return answers | |
iface = gr.Interface( | |
fn=gradio_wrapper, | |
inputs=[ | |
gr.File(label="Image Folder", type="file", multiple=True), | |
gr.JSON(label="Question File"), | |
gr.Textbox(label="Answers File"), | |
gr.Dropdown(label="Conversation Mode", choices=["llava_v1"]), | |
gr.Slider(label="Number of Chunks", min_value=1, max_value=10, step=1, value=1), | |
gr.Slider(label="Chunk Index", min_value=0, max_value=9, step=1, value=0), | |
gr.Slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.2), | |
gr.Textbox(label="Top P", value=None), | |
gr.Slider(label="Number of Beams", min_value=1, max_value=10, step=1, value=1) | |
], | |
outputs=[ | |
gr.Textbox(label="Answers") | |
], | |
title="Model Evaluation Interface", | |
description="A Gradio interface for evaluating models." | |
) | |
if __name__ == "__main__": | |
iface.launch() |