Prometheus-VL / app.py
tonic
refactor
3263d5e
raw
history blame
5.91 kB
import spaces
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from prometheus.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from prometheus.conversation import conv_templates, SeparatorStyle
from prometheus.model.builder import load_pretrained_model
from prometheus.utils import disable_torch_init
from prometheus.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
model_path = 'kaist-ai/prometheus-vision-13b-v1.0'
model_name = 'llava-v1.5'
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
@spaces.GPU
def eval_model(args, model_name = model_name, model_path = model_path):
disable_torch_init()
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for line in tqdm(questions):
idx = line["question_id"]
image_file = line["image"]
qs = line["text"]
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(os.path.join(args.image_folder, image_file))
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
# no_repeat_ngram_size=3,
max_new_tokens=1024,
use_cache=True)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
def gradio_wrapper( image_folder, question_file, answers_file, conv_mode, num_chunks, chunk_idx, temperature, top_p, num_beams, model_path = model_path , model_name = model_name):
question_file_path = os.path.join(tempfile.mkdtemp(), "question.jsonl")
with open(question_file_path, "w") as f:
for question in question_file:
f.write(json.dumps(question) + "\n")
temp_image_folder = tempfile.mkdtemp()
for image_file in image_folder:
image_path = os.path.join(temp_image_folder, image_file.name)
image_file.save(image_path)
args = argparse.Namespace(
model_path=model_path,
model_base=model_base,
image_folder=temp_image_folder,
question_file=question_file_path,
answers_file=answers_file,
conv_mode=conv_mode,
num_chunks=num_chunks,
chunk_idx=chunk_idx,
temperature=temperature,
top_p=top_p,
num_beams=num_beams
)
eval_model(args)
with open(answers_file, "r") as f:
answers = f.readlines()
return answers
iface = gr.Interface(
fn=gradio_wrapper,
inputs=[
gr.File(label="Image Folder", type="file", multiple=True),
gr.JSON(label="Question File"),
gr.Textbox(label="Answers File"),
gr.Dropdown(label="Conversation Mode", choices=["llava_v1"]),
gr.Slider(label="Number of Chunks", min_value=1, max_value=10, step=1, value=1),
gr.Slider(label="Chunk Index", min_value=0, max_value=9, step=1, value=0),
gr.Slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.2),
gr.Textbox(label="Top P", value=None),
gr.Slider(label="Number of Beams", min_value=1, max_value=10, step=1, value=1)
],
outputs=[
gr.Textbox(label="Answers")
],
title="Model Evaluation Interface",
description="A Gradio interface for evaluating models."
)
if __name__ == "__main__":
iface.launch()