File size: 5,884 Bytes
b5f76b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import spaces

import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

from PIL import Image
import math


model_path = 'kaist-ai/prometheus-vision-13b-v1.0'
model_name = 'llava-v1.5'

def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

@spaces.GPU
def eval_model(args, model_name = model_name, model_path = model_path):
    disable_torch_init()
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for line in tqdm(questions):
        idx = line["question_id"]
        image_file = line["image"]
        qs = line["text"]
        cur_prompt = qs
        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        image = Image.open(os.path.join(args.image_folder, image_file))
        image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor.unsqueeze(0).half().cuda(),
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                top_p=args.top_p,
                num_beams=args.num_beams,
                # no_repeat_ngram_size=3,
                max_new_tokens=1024,
                use_cache=True)

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

def gradio_wrapper( model_path = model_path , model_name = model_name, image_folder, question_file, answers_file, conv_mode, num_chunks, chunk_idx, temperature, top_p, num_beams):
    
    question_file_path = os.path.join(tempfile.mkdtemp(), "question.jsonl")
    with open(question_file_path, "w") as f:
        for question in question_file:
            f.write(json.dumps(question) + "\n")
    
    temp_image_folder = tempfile.mkdtemp()
    for image_file in image_folder:
        image_path = os.path.join(temp_image_folder, image_file.name)
        image_file.save(image_path)
    
    args = argparse.Namespace(
        model_path=model_path,
        model_base=model_base,
        image_folder=temp_image_folder,
        question_file=question_file_path,
        answers_file=answers_file,
        conv_mode=conv_mode,
        num_chunks=num_chunks,
        chunk_idx=chunk_idx,
        temperature=temperature,
        top_p=top_p,
        num_beams=num_beams
    )
    
    eval_model(args)
    
    with open(answers_file, "r") as f:
        answers = f.readlines()
        
    return answers

iface = gr.Interface(
    fn=gradio_wrapper,
    inputs=[
        gr.File(label="Image Folder", type="file", multiple=True),
        gr.JSON(label="Question File"),
        gr.Textbox(label="Answers File"),
        gr.Dropdown(label="Conversation Mode", choices=["llava_v1"]),
        gr.Slider(label="Number of Chunks", min_value=1, max_value=10, step=1, value=1),
        gr.Slider(label="Chunk Index", min_value=0, max_value=9, step=1, value=0),
        gr.Slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.2),
        gr.Textbox(label="Top P", value=None),
        gr.Slider(label="Number of Beams", min_value=1, max_value=10, step=1, value=1)
    ],
    outputs=[
        gr.Textbox(label="Answers")
    ],
    title="Model Evaluation Interface",
    description="A Gradio interface for evaluating models."
)

if __name__ == "__main__":
    iface.launch()