File size: 10,070 Bytes
cfe7f69 1a1d765 3acffaa 1a1d765 f72bc8b 1a1d765 f72bc8b 03c54bf f72bc8b 1a1d765 f72bc8b 1a1d765 2e080e9 1a1d765 03c54bf 1a1d765 03c54bf 1a1d765 03c54bf 1a1d765 73d3004 03c54bf 73d3004 03c54bf fe07c2d 1a1d765 03c54bf fe07c2d 03c54bf f72bc8b fe07c2d 03c54bf 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 f72bc8b 1a1d765 03c54bf 1a1d765 03c54bf 1a1d765 f72bc8b 1a1d765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import os
Title = """# Welcome to 🌟Tonic's 🌠Lucie-7B-Instruct Demo"""
description = """
🌠Lucie-7B-Instruct is a fine-tuned version of [Lucie-7B](https://huggingface.co./OpenLLM-France/Lucie-7B), an open-source, multilingual causal language model created by OpenLLM-France.
🌠Lucie-7B-Instruct is fine-tuned on synthetic instructions produced by ChatGPT and Gemma and a small set of customized prompts about OpenLLM and Lucie.
"""
training = """
## Training details
### Training data
Lucie-7B-Instruct is trained on the following datasets:
* [Alpaca-cleaned](https://huggingface.co./datasets/yahma/alpaca-cleaned) (English; 51604 samples)
* [Alpaca-cleaned-fr](https://huggingface.co./datasets/cmh/alpaca_data_cleaned_fr_52k) (French; 51655 samples)
* [Magpie-Gemma](https://huggingface.co./datasets/Magpie-Align/Magpie-Gemma2-Pro-200K-Filtered) (English; 195167 samples)
* [Wildchat](https://huggingface.co./datasets/allenai/WildChat-1M) (French subset; 26436 samples)
* Hard-coded prompts concerning OpenLLM and Lucie (based on [allenai/tulu-3-hard-coded-10x](https://huggingface.co./datasets/allenai/tulu-3-hard-coded-10x))
* French: openllm_french.jsonl (24x10 samples)
* English: openllm_english.jsonl (24x10 samples)"""
join_us = """
## Join us:
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP)
On 🤗Huggingface: [MultiTransformer](https://huggingface.co./MultiTransformer)
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
# Initialize model and tokenizer
model_id = "OpenLLM-France/Lucie-7B-Instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get the token from environment variables
hf_token = os.getenv('READTOKEN')
if not hf_token:
raise ValueError("Please set the READTOKEN environment variable")
# Initialize tokenizer and model with token authentication
tokenizer = AutoTokenizer.from_pretrained(
model_id,
token=hf_token,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=hf_token,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
config_json = model.config.to_dict()
def format_model_info(config):
info = []
important_keys = [
"model_type", "vocab_size", "hidden_size", "num_attention_heads",
"num_hidden_layers", "max_position_embeddings", "torch_dtype"
]
for key in important_keys:
if key in config:
value = config[key]
# Convert torch_dtype to string representation if it exists
if key == "torch_dtype" and hasattr(value, "name"):
value = value.name
info.append(f"**{key}:** {value}")
return "\n".join(info)
@spaces.GPU
def generate_response(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty, top_k):
# Construct the full prompt with system and user messages
full_prompt = f"""<|system|>{system_prompt}</s>
<|user|>{user_prompt}</s>
<|assistant|>"""
# Prepare the input prompt
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
# Generate response
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and return the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
return response.split("<|assistant|>")[-1].strip()
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(Title)
with gr.Row():
with gr.Column():
gr.Markdown(description)
with gr.Column():
gr.Markdown(training)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### Model Configuration")
gr.Markdown(format_model_info(config_json))
with gr.Column():
with gr.Group():
gr.Markdown("### Tokenizer Configuration")
gr.Markdown(f"""
**Vocabulary Size:** {tokenizer.vocab_size}
**Model Max Length:** {tokenizer.model_max_length}
**Padding Token:** {tokenizer.pad_token}
**EOS Token:** {tokenizer.eos_token}
""")
with gr.Row():
with gr.Group():
gr.Markdown(join_us)
with gr.Row():
with gr.Column():
# System prompt
system_prompt = gr.Textbox(
label="Message Système",
value="Tu es Lucie, une assistante IA française serviable et amicale. Tu réponds toujours en français de manière précise et utile. Tu es honnête et si tu ne sais pas quelque chose, tu le dis simplement.",
lines=3
)
# User prompt
user_prompt = gr.Textbox(
label="🗣️Votre message",
placeholder="Entrez votre texte ici...",
lines=5
)
with gr.Accordion("🧪Paramètres avancés", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="🌡️Temperature"
)
max_new_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="💶Longueur maximale"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="🏅Top-p"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="🏆Top-k"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.2,
step=0.1,
label="🦜Pénalité de répétition"
)
generate_btn = gr.Button("🌠Générer")
with gr.Column():
# Output component
output = gr.Textbox(
label="🌠Lucie",
lines=10
)
# Example prompts with all parameters
gr.Examples(
examples=[
# Format: [system_prompt, user_prompt, temperature, max_tokens, top_p, rep_penalty, top_k]
[
"Tu es Lucie, une assistante IA française serviable et amicale.",
"Bonjour! Comment vas-tu aujourd'hui?",
0.7, # temperature
512, # max_new_tokens
0.9, # top_p
1.2, # repetition_penalty
50 # top_k
],
[
"Tu es une experte en intelligence artificielle.",
"Peux-tu m'expliquer ce qu'est l'intelligence artificielle?",
0.8, # higher temperature for more creative explanation
1024, # longer response
0.95, # higher top_p for more diverse output
1.1, # lower repetition penalty
40 # lower top_k for more focused output
],
[
"Tu es une poétesse française.",
"Écris un court poème sur Paris.",
0.9, # higher temperature for more creativity
256, # shorter for poetry
0.95, # higher top_p for more creative language
1.3, # higher repetition penalty for unique words
60 # higher top_k for more varied vocabulary
],
[
"Tu es une experte en gastronomie française.",
"Quels sont les plats traditionnels français les plus connus?",
0.7, # moderate temperature for factual response
768, # medium length
0.9, # balanced top_p
1.2, # standard repetition penalty
50 # standard top_k
],
[
"Tu es une historienne spécialisée dans l'histoire de France.",
"Explique-moi l'histoire de la Révolution française en quelques phrases.",
0.6, # lower temperature for more factual response
1024, # longer for historical context
0.85, # lower top_p for more focused output
1.1, # lower repetition penalty
30 # lower top_k for more consistent output
]
],
inputs=[
system_prompt,
user_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
top_k
],
outputs=output,
label="Exemples"
)
# Set up the generation event
generate_btn.click(
fn=generate_response,
inputs=[system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty, top_k],
outputs=output
)
# Launch the demo
if __name__ == "__main__":
demo.launch(ssr_mode=False) |