Spaces:
Running
on
Zero
Running
on
Zero
Jordan Legg
commited on
Commit
·
bbed54b
1
Parent(s):
b153fc4
refactor: retrieve title and desc from markdown, improve UI for more responsive usage
Browse files
app.py
CHANGED
@@ -5,87 +5,76 @@ import os
|
|
5 |
import base64
|
6 |
import spaces
|
7 |
import io
|
8 |
-
import tempfile
|
9 |
from PIL import Image
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
- Math/molecular formulas
|
29 |
-
- Tables
|
30 |
-
- Charts
|
31 |
-
- Sheet music
|
32 |
-
- Geometric shapes
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
2. Upload an image.
|
37 |
-
3. (Optional) Fill in additional parameters based on the task.
|
38 |
-
4. Click **Process** to see the results.
|
39 |
-
---
|
40 |
-
### Join us :
|
41 |
-
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
42 |
-
"""
|
43 |
|
|
|
44 |
model_name = 'ucaslcl/GOT-OCR2_0'
|
45 |
|
46 |
-
|
47 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
|
|
48 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
49 |
model = model.eval().cuda()
|
50 |
model.config.pad_token_id = tokenizer.eos_token_id
|
51 |
|
52 |
-
def
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
@spaces.GPU
|
58 |
-
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
res = model.chat_crop(tokenizer, image_file=temp_image_path)
|
75 |
-
elif task == "Render Formatted OCR":
|
76 |
-
res = model.chat(tokenizer, temp_image_path, ocr_type='format', render=True, save_render_file='./results/demo.html')
|
77 |
-
with open('./results/demo.html', 'r') as f:
|
78 |
-
html_content = f.read()
|
79 |
-
os.remove(temp_image_path)
|
80 |
-
return res, html_content
|
81 |
-
|
82 |
-
# Clean up
|
83 |
-
os.remove(temp_image_path)
|
84 |
-
|
85 |
-
return res, None
|
86 |
-
except Exception as e:
|
87 |
-
return str(e), None
|
88 |
|
|
|
|
|
89 |
def update_inputs(task):
|
90 |
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
|
91 |
return [gr.update(visible=False)] * 4
|
@@ -105,22 +94,25 @@ def update_inputs(task):
|
|
105 |
]
|
106 |
elif task == "Render Formatted OCR":
|
107 |
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
|
108 |
-
|
109 |
|
110 |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
111 |
-
|
112 |
-
if
|
113 |
-
res, html_content
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
with gr.Blocks() as demo:
|
119 |
-
gr.Markdown(title)
|
120 |
-
gr.Markdown(description)
|
121 |
with gr.Row():
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
task_dropdown = gr.Dropdown(
|
125 |
choices=[
|
126 |
"Plain Text OCR",
|
@@ -153,27 +145,19 @@ with gr.Blocks() as demo:
|
|
153 |
visible=False
|
154 |
)
|
155 |
submit_button = gr.Button("Process")
|
156 |
-
|
157 |
-
|
158 |
output_text = gr.Textbox(label="OCR Result")
|
159 |
output_html = gr.HTML(label="Rendered HTML Output")
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
This small **330M parameter** model powerful OCR model can handle various text recognition tasks with high accuracy.
|
164 |
-
|
165 |
-
### Model Information
|
166 |
-
- **Model Name**: GOT-OCR 2.0
|
167 |
-
- **Hugging Face Repository**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
|
168 |
-
- **Environment**: CUDA 11.8 + PyTorch 2.0.1
|
169 |
-
""")
|
170 |
-
|
171 |
task_dropdown.change(
|
172 |
update_inputs,
|
173 |
inputs=[task_dropdown],
|
174 |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
|
175 |
)
|
176 |
|
|
|
177 |
submit_button.click(
|
178 |
ocr_demo,
|
179 |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
|
@@ -181,4 +165,4 @@ with gr.Blocks() as demo:
|
|
181 |
)
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
-
demo.launch()
|
|
|
5 |
import base64
|
6 |
import spaces
|
7 |
import io
|
|
|
8 |
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import yaml
|
11 |
+
import markdown
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
# Function to extract title and description from the markdown file
|
15 |
+
def extract_title_description(md_file_path):
|
16 |
+
with open(md_file_path, 'r') as f:
|
17 |
+
lines = f.readlines()
|
18 |
+
|
19 |
+
# Extract frontmatter (YAML) for title
|
20 |
+
frontmatter = []
|
21 |
+
content_start = 0
|
22 |
+
if lines[0].strip() == '---':
|
23 |
+
for idx, line in enumerate(lines[1:], 1):
|
24 |
+
if line.strip() == '---':
|
25 |
+
content_start = idx + 1
|
26 |
+
break
|
27 |
+
frontmatter.append(line)
|
28 |
+
|
29 |
+
frontmatter_yaml = yaml.safe_load(''.join(frontmatter))
|
30 |
+
title = frontmatter_yaml.get('title', 'Title Not Found')
|
31 |
+
|
32 |
+
# Extract content (description)
|
33 |
+
description_md = ''.join(lines[content_start:])
|
34 |
+
description = markdown.markdown(description_md)
|
35 |
+
|
36 |
+
return title, description
|
37 |
|
38 |
+
# Path to the markdown file
|
39 |
+
md_file_path = 'content/index.md'
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Extract title and description from the markdown file
|
42 |
+
title, description = extract_title_description(md_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Rest of the script continues as before
|
45 |
model_name = 'ucaslcl/GOT-OCR2_0'
|
46 |
|
|
|
47 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
48 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
49 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
50 |
model = model.eval().cuda()
|
51 |
model.config.pad_token_id = tokenizer.eos_token_id
|
52 |
|
53 |
+
def image_to_base64(image):
|
54 |
+
buffered = io.BytesIO()
|
55 |
+
image.save(buffered, format="PNG")
|
56 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
|
60 |
+
if task == "Plain Text OCR":
|
61 |
+
res = model.chat(tokenizer, image, ocr_type='ocr')
|
62 |
+
elif task == "Format Text OCR":
|
63 |
+
res = model.chat(tokenizer, image, ocr_type='format')
|
64 |
+
elif task == "Fine-grained OCR (Box)":
|
65 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
|
66 |
+
elif task == "Fine-grained OCR (Color)":
|
67 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
|
68 |
+
elif task == "Multi-crop OCR":
|
69 |
+
res = model.chat_crop(tokenizer, image_file=image)
|
70 |
+
elif task == "Render Formatted OCR":
|
71 |
+
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
|
72 |
+
with open('./demo.html', 'r') as f:
|
73 |
+
html_content = f.read()
|
74 |
+
return res, html_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
return res, None
|
77 |
+
|
78 |
def update_inputs(task):
|
79 |
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
|
80 |
return [gr.update(visible=False)] * 4
|
|
|
94 |
]
|
95 |
elif task == "Render Formatted OCR":
|
96 |
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
|
|
|
97 |
|
98 |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
99 |
+
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
|
100 |
+
if html_content:
|
101 |
+
return res, html_content
|
102 |
+
return res, None
|
103 |
+
|
104 |
+
import gradio as gr
|
105 |
|
106 |
with gr.Blocks() as demo:
|
|
|
|
|
107 |
with gr.Row():
|
108 |
+
# Left Column: Description
|
109 |
+
with gr.Column(scale=1):
|
110 |
+
gr.Markdown(f"# {title}")
|
111 |
+
gr.Markdown(description)
|
112 |
+
|
113 |
+
# Right Column: App Inputs and Outputs
|
114 |
+
with gr.Column(scale=3):
|
115 |
+
image_input = gr.Image(type="filepath", label="Input Image")
|
116 |
task_dropdown = gr.Dropdown(
|
117 |
choices=[
|
118 |
"Plain Text OCR",
|
|
|
145 |
visible=False
|
146 |
)
|
147 |
submit_button = gr.Button("Process")
|
148 |
+
|
149 |
+
# OCR Result below the Submit button
|
150 |
output_text = gr.Textbox(label="OCR Result")
|
151 |
output_html = gr.HTML(label="Rendered HTML Output")
|
152 |
|
153 |
+
# Update inputs dynamically based on task selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
task_dropdown.change(
|
155 |
update_inputs,
|
156 |
inputs=[task_dropdown],
|
157 |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
|
158 |
)
|
159 |
|
160 |
+
# Process OCR on button click
|
161 |
submit_button.click(
|
162 |
ocr_demo,
|
163 |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
|
|
|
165 |
)
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
+
demo.launch()
|