File size: 7,662 Bytes
cef4f97
 
22c7b5b
cef4f97
 
 
71a766f
7a2763f
aebaa46
cef4f97
22c7b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed456c1
22c7b5b
cef4f97
00ee90b
cef4f97
 
00ee90b
cef4f97
aebaa46
 
 
 
 
 
 
 
 
cef4f97
71a766f
aebaa46
 
7a2763f
 
353f4f2
aebaa46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2763f
aebaa46
 
 
 
7a2763f
cef4f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a766f
 
cef4f97
 
 
 
 
22c7b5b
 
cef4f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c7b5b
 
 
 
 
 
 
 
 
 
cef4f97
 
 
 
 
 
 
 
 
 
 
 
f34dca6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
from loadimg import load_img
from PIL import Image
import numpy as np

title = """# 🙋🏻‍♂️Welcome to Tonic's🫴🏻📸GOT-OCR"""
description = """"
The GOT-OCR model is a revolutionary step in the evolution of OCR systems, boasting 580M parameters and the ability to process various forms of "characters." It features a high-compression encoder and a long-context decoder, making it well-suited for both scene- and document-style images. The model also supports multi-page and dynamic resolution OCR for added practicality.

The model can output results in a variety of formats, including plain text, markdown, and even complex outputs like TikZ diagrams or molecular SMILES strings. Interactive OCR allows users to specify regions of interest for OCR using coordinates or colors.

## Features
- **Plain Text OCR**: Recognizes and extracts plain text from images.
- **Formatted Text OCR**: Extracts text while preserving its formatting (tables, formulas, etc.).
- **Fine-grained OCR**: Box-based and color-based OCR for precise text extraction from specific regions.
- **Multi-crop OCR**: Processes multiple cropped regions within an image.
- **Rendered Formatted OCR Results**: Outputs OCR results in markdown, TikZ, SMILES, or other formats with rendered formatting.

GOT-OCR-2.0 can handle:
- Plain text
- Math/molecular formulas
- Tables
- Charts
- Sheet music
- Geometric shapes

## How to Use
1. Select a task from the dropdown menu.
2. Upload an image.
3. (Optional) Fill in additional parameters based on the task.
4. Click **Process** to see the results.
---
### Join us : 
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co./MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

model_name = 'ucaslcl/GOT-OCR2_0'

tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
model.config.pad_token_id = tokenizer.eos_token_id

def load_image(image_file):
    if isinstance(image_file, str):
        if image_file.startswith('http') or image_file.startswith('https'):
            return Image.open(requests.get(image_file, stream=True).raw).convert('RGB')
        else:
            return Image.open(image_file).convert('RGB')
    else:
        return image_file.convert('RGB')

@spaces.GPU
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
    try:
        img = load_image(image)
        img_path = "/tmp/temp_image.png"
        img.save(img_path)

        if task == "Plain Text OCR":
            res = model.chat(tokenizer, img_path, ocr_type='ocr')
        elif task == "Format Text OCR":
            res = model.chat(tokenizer, img_path, ocr_type='format')
        elif task == "Fine-grained OCR (Box)":
            res = model.chat(tokenizer, img_path, ocr_type=ocr_type, ocr_box=ocr_box)
        elif task == "Fine-grained OCR (Color)":
            res = model.chat(tokenizer, img_path, ocr_type=ocr_type, ocr_color=ocr_color)
        elif task == "Multi-crop OCR":
            res = model.chat_crop(tokenizer, image_file=img_path)
        elif task == "Render Formatted OCR":
            res = model.chat(tokenizer, img_path, ocr_type='format', render=True, save_render_file='./results/demo.html')
            with open('./results/demo.html', 'r') as f:
                html_content = f.read()
            return res, html_content
        
        # Clean up 
        os.remove(img_path)
        
        return res, None
    except Exception as e:
        return str(e), None
    
def update_inputs(task):
    if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
        return [gr.update(visible=False)] * 4
    elif task == "Fine-grained OCR (Box)":
        return [
            gr.update(visible=True, choices=["ocr", "format"]),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False)
        ]
    elif task == "Fine-grained OCR (Color)":
        return [
            gr.update(visible=True, choices=["ocr", "format"]),
            gr.update(visible=False),
            gr.update(visible=True, choices=["red", "green", "blue"]),
            gr.update(visible=False)
        ]
    elif task == "Render Formatted OCR":
        return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
    
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
    res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
    if html_content:
        return res, html_content
    return res, None

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="Input Image")
            task_dropdown = gr.Dropdown(
                choices=[
                    "Plain Text OCR",
                    "Format Text OCR",
                    "Fine-grained OCR (Box)",
                    "Fine-grained OCR (Color)",
                    "Multi-crop OCR",
                    "Render Formatted OCR"
                ],
                label="Select Task",
                value="Plain Text OCR"
            )
            ocr_type_dropdown = gr.Dropdown(
                choices=["ocr", "format"],
                label="OCR Type",
                visible=False
            )
            ocr_box_input = gr.Textbox(
                label="OCR Box (x1,y1,x2,y2)",
                placeholder="e.g., 100,100,200,200",
                visible=False
            )
            ocr_color_dropdown = gr.Dropdown(
                choices=["red", "green", "blue"],
                label="OCR Color",
                visible=False
            )
            render_checkbox = gr.Checkbox(
                label="Render Result",
                visible=False
            )
            submit_button = gr.Button("Process")
        
        with gr.Column():
            output_text = gr.Textbox(label="OCR Result")
            output_html = gr.HTML(label="Rendered HTML Output")
    
    gr.Markdown("""## GOT-OCR 2.0 
    
    This small **330M parameter** model powerful OCR model can handle various text recognition tasks with high accuracy.
    
    ### Model Information
    - **Model Name**: GOT-OCR 2.0
    - **Hugging Face Repository**: [ucaslcl/GOT-OCR2_0](https://huggingface.co./ucaslcl/GOT-OCR2_0)
    - **Environment**: CUDA 11.8 + PyTorch 2.0.1
                """)
    
    task_dropdown.change(
        update_inputs,
        inputs=[task_dropdown],
        outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
    )
    
    submit_button.click(
        ocr_demo,
        inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
        outputs=[output_text, output_html]
    )

if __name__ == "__main__":
    demo.launch()