File size: 5,082 Bytes
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
 
 
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
b0b2441
 
 
 
39a3261
 
b0b2441
 
39a3261
b0b2441
39a3261
b0b2441
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
 
 
 
 
 
39a3261
b0b2441
 
 
39a3261
b0b2441
 
 
39a3261
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import torch
from flashsloth.constants import (
    IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX
)
from flashsloth.conversation import conv_templates, SeparatorStyle
from flashsloth.model.builder import load_pretrained_model
from flashsloth.utils import disable_torch_init
from flashsloth.mm_utils import (
    tokenizer_image_token, process_images, process_images_hd_inference,
    get_model_name_from_path, KeywordsStoppingCriteria
)
from PIL import Image
import gradio as gr


from transformers import TextIteratorStreamer
from threading import Thread


disable_torch_init()

MODEL_PATH = "Tongbo/FlashSloth_HD-3.2B"

model_name = get_model_name_from_path(MODEL_PATH)
tokenizer, model, image_processor, context_len = load_pretrained_model(MODEL_PATH, None, model_name)
model.to('cuda')  
model.eval()      

def generate_description(image, prompt_text, temperature, top_p, max_tokens):

    keywords = ['</s>']


    text = DEFAULT_IMAGE_TOKEN + '\n' + prompt_text
    text = text + LEARNABLE_TOKEN
    

    image = image.convert('RGB')
    if model.config.image_hd:
        image_tensor = process_images_hd_inference([image], image_processor, model.config)[0]
    else:
        image_tensor = process_images([image], image_processor, model.config)[0]
    image_tensor = image_tensor.unsqueeze(0).to(dtype=torch.float16, device='cuda', non_blocking=True)
    

    conv = conv_templates["phi2"].copy()
    conv.append_message(conv.roles[0], text)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()


    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
    input_ids = input_ids.unsqueeze(0).to(device='cuda', non_blocking=True)

    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    streamer = TextIteratorStreamer(
        tokenizer=tokenizer, 
        skip_prompt=True, 
        skip_special_tokens=True
    )

    generation_kwargs = dict(
        inputs=input_ids,
        images=image_tensor,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=int(max_tokens),  
        use_cache=True,
        eos_token_id=tokenizer.eos_token_id,
        stopping_criteria=[stopping_criteria],
        streamer=streamer            
    )

    def _generate():
        with torch.inference_mode():
            model.generate(**generation_kwargs)

    # 在单独线程中运行生成,防止阻塞
    generation_thread = Thread(target=_generate)
    generation_thread.start()

    # 边生成边yield输出
    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text

    generation_thread.join()

# 自定义CSS样式,用于增大字体和美化界面
custom_css = """
<style>
/* 增大标题字体 */
#title {
    font-size: 80px !important;
    text-align: center;
    margin-bottom: 20px;
}

/* 增大描述文字字体 */
#description {
    font-size: 24px !important;
    text-align: center;
    margin-bottom: 40px;
}

/* 增大标签和输入框的字体 */
.gradio-container * {
    font-size: 18px !important;
}

/* 增大按钮字体 */
button {
    font-size: 20px !important;
    padding: 10px 20px;
}

/* 增大输出文本的字体 */
.output_text {
    font-size: 20px !important;
}
</style>
"""

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(custom_css)
    gr.HTML("<h1 style='font-size:70px; text-align:center;'>FlashSloth 多模态大模型 Demo</h1>")

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="上传图片")

            temperature_slider = gr.Slider(
                minimum=0.01, 
                maximum=1.0, 
                step=0.05, 
                value=0.7, 
                label="Temperature"
            )
            topp_slider = gr.Slider(
                minimum=0.01, 
                maximum=1.0, 
                step=0.05, 
                value=0.9, 
                label="Top-p"
            )
            maxtoken_slider = gr.Slider(
                minimum=64, 
                maximum=3072, 
                step=1, 
                value=512, 
                label="Max Tokens"
            )
            
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(
                lines=3, 
                placeholder="Describe this photo in detail.", 
                label="问题提示"
            )
            submit_button = gr.Button("生成答案", variant="primary")

            output_text = gr.Textbox(
                label="生成的答案", 
                interactive=False, 
                lines=15, 
                elem_classes=["output_text"]
            )

    submit_button.click(
        fn=generate_description, 
        inputs=[image_input, prompt_input, temperature_slider, topp_slider, maxtoken_slider], 
        outputs=output_text, 
        show_progress=True
    )

if __name__ == "__main__":
    demo.queue().launch()