from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import pipeline import torch import gradio as gr base_model_name = "microsoft/Phi-3-mini-4k-instruct" model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, device_map="cpu", low_cpu_mem_usage=True, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(base_model_name , trust_remote_code=True) def format_prompt(message, history): system_prompt = "You are Phi3, a highly knowledgeable and friendly super intelligent AI assistant equipped with extensive information across various domains." prompt = "" prompt += f"<|system|>\n{system_prompt}<|end|>\n" for user_prompt, bot_response in history: prompt += f"<|user|>{user_prompt}<|end|>\n" prompt += f"<|assistant|>{bot_response}<|end|>\n" prompt += f"<|user|>{message}<|end|>\n<|assistant|>" return prompt def generate(prompt, history, max_new_tokens = 128, temperature = 0.6): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 formatted_prompt = format_prompt(prompt, history) response = "" num_prompt_tokens = len(tokenizer(formatted_prompt)['input_ids']) max_length = num_prompt_tokens + max_new_tokens textgen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_length, temperature=temperature) output = textgen(formatted_prompt) response = output[0]['generated_text'].replace(formatted_prompt, '') return response mychatbot = gr.Chatbot( avatar_images=["user.png", "botp.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) demo = gr.ChatInterface(fn=generate, chatbot=mychatbot, title="Phi-3 Mini Chat Demo", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False)