File size: 1,951 Bytes
d631036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
import torch
import gradio as gr

base_model_name = "microsoft/Phi-3-mini-4k-instruct"
model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, device_map="cpu", low_cpu_mem_usage=True, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(base_model_name , trust_remote_code=True)

def format_prompt(message, history):
  system_prompt = "You are Phi3, a highly knowledgeable and friendly super intelligent AI assistant equipped with extensive information across various domains."
  prompt = ""
  prompt += f"<|system|>\n{system_prompt}<|end|>\n"
  for user_prompt, bot_response in history:
    prompt += f"<|user|>{user_prompt}<|end|>\n"
    prompt += f"<|assistant|>{bot_response}<|end|>\n"
  prompt += f"<|user|>{message}<|end|>\n<|assistant|>"
  return prompt

def generate(prompt, history, max_new_tokens = 128, temperature = 0.6):
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2

    formatted_prompt = format_prompt(prompt, history)
    response = ""

    num_prompt_tokens = len(tokenizer(formatted_prompt)['input_ids'])
    max_length = num_prompt_tokens + max_new_tokens

    textgen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_length, temperature=temperature)
    output = textgen(formatted_prompt)
    response = output[0]['generated_text'].replace(formatted_prompt, '')
    return response

mychatbot = gr.Chatbot(
    avatar_images=["user.png", "botp.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)

demo  = gr.ChatInterface(fn=generate,
                        chatbot=mychatbot,
                        title="Phi-3 Mini Chat Demo",
                        retry_btn=None,
                        undo_btn=None
                       )

demo.queue().launch(show_api=False)