Spaces:
Runtime error
Runtime error
Big layout update with some new functionalities
Browse files- Home.py +40 -25
- src/chatbot.py +59 -26
- src/vectordatabase.py +17 -43
Home.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import chatbot, keyword_search
|
3 |
-
from gradio_calendar import Calendar
|
4 |
-
from datetime import datetime
|
5 |
|
6 |
# Define important variables
|
7 |
legislature_periods = [
|
@@ -34,21 +34,23 @@ partys = ['All','CDU/CSU','SPD','AfD','Grüne','FDP','DIE LINKE.','GB/BHE','DRP'
|
|
34 |
|
35 |
with gr.Blocks() as App:
|
36 |
with gr.Tab("ChatBot"):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
with gr.Tab("
|
52 |
|
53 |
with gr.Blocks() as Block:
|
54 |
# Keyword Input
|
@@ -58,7 +60,7 @@ with gr.Blocks() as App:
|
|
58 |
with gr.Accordion('Detailed filters', open=False):
|
59 |
# Row orientation
|
60 |
with gr.Row() as additional_input:
|
61 |
-
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
|
62 |
party_dopdown = gr.Dropdown(value='All', choices=partys, label='Party')
|
63 |
# ToDo: Add date or legislature filter as input
|
64 |
#start_date = Calendar(value="1949-01-01", type="datetime", label="Select start date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
@@ -111,17 +113,30 @@ with gr.Blocks() as App:
|
|
111 |
)
|
112 |
|
113 |
with gr.Tab("About"):
|
114 |
-
gr.Markdown("""
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
""")
|
|
|
122 |
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
-
App.launch(share=False) #
|
126 |
|
127 |
|
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import chatbot, keyword_search
|
3 |
+
#from gradio_calendar import Calendar
|
4 |
+
#from datetime import datetime
|
5 |
|
6 |
# Define important variables
|
7 |
legislature_periods = [
|
|
|
34 |
|
35 |
with gr.Blocks() as App:
|
36 |
with gr.Tab("ChatBot"):
|
37 |
+
with gr.Blocks():
|
38 |
+
# Apply RAG using chatbut function from local file ChatBot.py
|
39 |
+
db_inputs = gr.Dropdown(choices=legislature_periods, value="All", multiselect=True, label="Legislature", info="Select a combination of legislatures as basis for the chatbot's replies", show_label=True)
|
40 |
+
prompt_language = gr.Dropdown(choices=["DE", "EN"], value="DE",label="Language", info="Choose output language", multiselect=False)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
gr.ChatInterface(chatbot,
|
45 |
+
title="PoliticsToYou",
|
46 |
+
description= "Ask anything about your favorite political topic from any legislature period",
|
47 |
+
examples=["Wie steht die CDU zur Cannabislegalisierung?", "Wie steht die FDP zur Rente?", "Was wird für die Rechte von LGBTQ getan?", "Sollen wir Waffen an die Ukraine liefern"],
|
48 |
+
cache_examples=False, #true increases loading time
|
49 |
+
additional_inputs = [db_inputs, prompt_language],
|
50 |
+
additional_inputs_accordion="Additional inputs"
|
51 |
+
)
|
52 |
|
53 |
+
with gr.Tab("KeywordSearch"):
|
54 |
|
55 |
with gr.Blocks() as Block:
|
56 |
# Keyword Input
|
|
|
60 |
with gr.Accordion('Detailed filters', open=False):
|
61 |
# Row orientation
|
62 |
with gr.Row() as additional_input:
|
63 |
+
n_slider = gr.Slider(label="Number of Results",info="Other filters reduces the returned results", minimum=1, maximum=100, step=1, value=10)
|
64 |
party_dopdown = gr.Dropdown(value='All', choices=partys, label='Party')
|
65 |
# ToDo: Add date or legislature filter as input
|
66 |
#start_date = Calendar(value="1949-01-01", type="datetime", label="Select start date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
|
|
113 |
)
|
114 |
|
115 |
with gr.Tab("About"):
|
116 |
+
gr.Markdown("""<h1>Welcome to <strong>Politics2you</strong> - your playground for investigating the heart of politics in Germany.</h1>
|
117 |
+
|
118 |
+
<p>Would you like to gain insights into political debates or reveal party positions on specific topics from any legislature?</p>
|
119 |
+
<ul>
|
120 |
+
<li>You can use the ChatBot to ask all your questions or search for related speech content in the Keyword Search section.</li>
|
121 |
+
</ul>
|
122 |
+
<p>Enjoy your journey! </p>
|
123 |
+
<p>Looking forward to your feedback! <a href="mailto:[email protected]">[email protected]</a></p>
|
124 |
+
|
125 |
+
<h2>Further improvements & Ideas:</h2>
|
126 |
+
<ul>
|
127 |
+
<li>Experiment with different LLMs and Templates</li>
|
128 |
+
<li>Include chat history in RAG</li>
|
129 |
+
<li>Add a date or legislature filter to KeywordSearch</li>
|
130 |
+
<li>Exclude short document splits when creating the vectorstore</li>
|
131 |
+
<li>Improve inference time</li>
|
132 |
+
<li>Add analytic tools for party manifestos</li>
|
133 |
+
<li>Expand the scope to different countries</li>
|
134 |
+
</ul>
|
135 |
""")
|
136 |
+
|
137 |
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
+
App.launch(share=False) # true not supported on hf spaces
|
141 |
|
142 |
|
src/chatbot.py
CHANGED
@@ -2,21 +2,20 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
2 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
3 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
|
5 |
-
|
6 |
from src.vectordatabase import RAG, get_vectorstore
|
7 |
import pandas as pd
|
8 |
-
from dotenv import load_dotenv, find_dotenv
|
9 |
-
|
10 |
-
#Load environmental variables from .env-file
|
11 |
-
#load_dotenv(find_dotenv())
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
15 |
llm = HuggingFaceHub(
|
16 |
-
# Try different
|
17 |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
18 |
# repo_id="CohereForAI/c4ai-command-r-v01", # too large 69gb
|
19 |
-
# repo_id="CohereForAI/c4ai-command-r-v01-4bit", # too large
|
20 |
# repo_id="meta-llama/Meta-Llama-3-8B", # too large 16 gb
|
21 |
task="text-generation",
|
22 |
model_kwargs={
|
@@ -25,10 +24,8 @@ llm = HuggingFaceHub(
|
|
25 |
"temperature": 0.1,
|
26 |
"repetition_penalty": 1.03,
|
27 |
}
|
28 |
-
#,huggingfacehub_api_token
|
29 |
-
|
30 |
)
|
31 |
-
#
|
32 |
prompt_test = ChatPromptTemplate.from_template("""<s>[INST]
|
33 |
Instruction: Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts:
|
34 |
|
@@ -48,31 +45,67 @@ prompt_de = ChatPromptTemplate.from_template("""Beantworte die folgende Frage au
|
|
48 |
"""
|
49 |
# Returns the answer in German
|
50 |
)
|
51 |
-
prompt_en = ChatPromptTemplate.from_template("""
|
52 |
|
53 |
<context>
|
54 |
{context}
|
55 |
</context>
|
56 |
|
57 |
-
|
58 |
"""
|
59 |
-
# Returns the answer in
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
#folder_path =
|
64 |
-
#index_name = "speeches_1949_09_12"
|
65 |
-
#index_name = "legislature20"
|
66 |
-
#db = get
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
db = get_vectorstore(inputs = db_inputs, embeddings=embeddings)
|
70 |
-
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return response
|
77 |
|
78 |
|
|
|
2 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
3 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
|
|
|
5 |
from src.vectordatabase import RAG, get_vectorstore
|
6 |
import pandas as pd
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load environmental variables from .env-file
|
9 |
+
# from dotenv import load_dotenv, find_dotenv
|
10 |
+
# load_dotenv(find_dotenv())
|
11 |
|
12 |
+
# Define important variables
|
13 |
+
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2") # Remove embedding input parameter from functions?
|
14 |
llm = HuggingFaceHub(
|
15 |
+
# ToDo: Try different models here
|
16 |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
# repo_id="CohereForAI/c4ai-command-r-v01", # too large 69gb
|
18 |
+
# repo_id="CohereForAI/c4ai-command-r-v01-4bit", # too large 22gb
|
19 |
# repo_id="meta-llama/Meta-Llama-3-8B", # too large 16 gb
|
20 |
task="text-generation",
|
21 |
model_kwargs={
|
|
|
24 |
"temperature": 0.1,
|
25 |
"repetition_penalty": 1.03,
|
26 |
}
|
|
|
|
|
27 |
)
|
28 |
+
# ToDo: Experiment with different templates
|
29 |
prompt_test = ChatPromptTemplate.from_template("""<s>[INST]
|
30 |
Instruction: Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts:
|
31 |
|
|
|
45 |
"""
|
46 |
# Returns the answer in German
|
47 |
)
|
48 |
+
prompt_en = ChatPromptTemplate.from_template("""Answer the following question in English and solely based on the provided context:
|
49 |
|
50 |
<context>
|
51 |
{context}
|
52 |
</context>
|
53 |
|
54 |
+
Question: {input}
|
55 |
"""
|
56 |
+
# Returns the answer in English
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
|
61 |
+
def chatbot(message, history, db_inputs, prompt_language, llm=llm):
|
62 |
+
"""
|
63 |
+
Generate a response from the chatbot based on the provided message, history, database inputs, prompt language, and LLM model.
|
64 |
+
|
65 |
+
Parameters:
|
66 |
+
-----------
|
67 |
+
message : str
|
68 |
+
The message or question to be answered by the chatbot.
|
69 |
+
|
70 |
+
history : list
|
71 |
+
The history of previous interactions or messages.
|
72 |
+
|
73 |
+
db_inputs : list
|
74 |
+
A list of strings specifying which vector stores to combine. Each string represents a specific index or a special keyword "All".
|
75 |
+
|
76 |
+
prompt_language : str
|
77 |
+
The language of the prompt to be used for generating the response. Should be either "DE" for German or "EN" for English.
|
78 |
+
|
79 |
+
llm : LLM, optional
|
80 |
+
An instance of the Language Model to be used for generating the response. Defaults to the global variable `llm`.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
--------
|
84 |
+
str
|
85 |
+
The response generated by the chatbot.
|
86 |
+
"""
|
87 |
+
|
88 |
db = get_vectorstore(inputs = db_inputs, embeddings=embeddings)
|
89 |
+
|
90 |
+
# Select prompt based on user input
|
91 |
+
if prompt_language == "DE":
|
92 |
+
prompt = prompt_de
|
93 |
+
raw_response = RAG(llm=llm, prompt=prompt, db=db, question=message)
|
94 |
+
# Only necessary because mistral does include it´s json structure in the output including its input content
|
95 |
+
try:
|
96 |
+
response = raw_response['answer'].split("Antwort: ")[1]
|
97 |
+
except:
|
98 |
+
response = raw_response['answer']
|
99 |
+
return response
|
100 |
+
else:
|
101 |
+
prompt = prompt_en
|
102 |
+
raw_response = RAG(llm=llm, prompt=prompt, db=db, question=message)
|
103 |
+
# Only necessary because mistral does include it´s json structure in the output including its input content
|
104 |
+
try:
|
105 |
+
response = raw_response['answer'].split("Answer: ")[1]
|
106 |
+
except:
|
107 |
+
response = raw_response['answer']
|
108 |
+
|
109 |
return response
|
110 |
|
111 |
|
src/vectordatabase.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
from langchain_community.document_loaders import DataFrameLoader
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
-
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
-
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
from langchain.chains import create_retrieval_chain
|
9 |
-
|
10 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
11 |
-
from
|
|
|
12 |
#import functools
|
13 |
|
14 |
import pandas as pd
|
@@ -62,45 +62,33 @@ def get_vectorstore(inputs, embeddings):
|
|
62 |
"""
|
63 |
Combine multiple FAISS vector stores into a single vector store based on the specified inputs.
|
64 |
|
65 |
-
Parameters
|
66 |
----------
|
67 |
inputs : list of str
|
68 |
A list of strings specifying which vector stores to combine. Each string represents a specific
|
69 |
-
index or a special keyword "All". If "All" is
|
70 |
-
|
71 |
|
72 |
embeddings : Embeddings
|
73 |
An instance of embeddings that will be used to load the vector stores. The specific type and
|
74 |
structure of `embeddings` depend on the implementation of the `get_vectorstore` function.
|
75 |
|
76 |
-
Returns
|
77 |
-------
|
78 |
FAISS
|
79 |
A FAISS vector store that combines the specified indices into a single vector store.
|
80 |
|
81 |
-
Notes:
|
82 |
-
-----
|
83 |
-
- The `folder_path` variable is set to the default path "./src/FAISS", where the FAISS index files are stored.
|
84 |
-
- The function initializes an empty FAISS vector store with a dimensionality of 128.
|
85 |
-
- If "All" is specified in the `inputs`, it directly loads and returns the comprehensive vector store named "speeches_1949_09_12".
|
86 |
-
- For each specific index in `inputs`, it retrieves the corresponding vector store and merges it with the initialized FAISS vector store.
|
87 |
-
- The `FAISS.load_local` method is used to load vector stores from the local file system.
|
88 |
-
The `allow_dangerous_deserialization` parameter is set to True to allow loading of potentially unsafe serialized objects.
|
89 |
"""
|
90 |
|
91 |
# Default folder path
|
92 |
folder_path = "./src/FAISS"
|
93 |
|
94 |
-
if inputs[0] == "All":
|
95 |
-
# index_name = "speeches_1949_09_12"
|
96 |
-
# db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
97 |
-
# embeddings=embeddings, allow_dangerous_deserialization=True)
|
98 |
return db_all
|
99 |
-
|
100 |
|
101 |
# Initialize empty db
|
102 |
-
embedding_function = embeddings
|
103 |
-
dimensions
|
104 |
|
105 |
db = FAISS(
|
106 |
embedding_function=embedding_function,
|
@@ -112,16 +100,21 @@ def get_vectorstore(inputs, embeddings):
|
|
112 |
|
113 |
# Retrieve inputs: 20. Legislaturperiode, 19. Legislaturperiode, ...
|
114 |
for input in inputs:
|
|
|
|
|
|
|
115 |
# Retrieve selected index and merge vector stores
|
116 |
index = input.split(".")[0]
|
117 |
index_name = f'{index}_legislature'
|
118 |
local_db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
119 |
-
|
120 |
db.merge_from(local_db)
|
|
|
121 |
return db
|
122 |
|
123 |
|
124 |
|
|
|
125 |
def RAG(llm, prompt, db, question):
|
126 |
"""
|
127 |
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
@@ -157,22 +150,3 @@ def RAG(llm, prompt, db, question):
|
|
157 |
|
158 |
return response
|
159 |
|
160 |
-
|
161 |
-
#########
|
162 |
-
# Dynamically loading vector_db
|
163 |
-
##########
|
164 |
-
|
165 |
-
def get_similar_vectorstore(start_date, end_date, party, base_path='src\FAISS'):
|
166 |
-
|
167 |
-
# Get all file names
|
168 |
-
vector_stores = [store for store in os.listdir(base_path) if store.split(".")[1] == "faiss"]
|
169 |
-
|
170 |
-
df = pd.DataFrame(culumns=["file_name", "start_date", "end_date", "date_diff"])
|
171 |
-
# Extract metadata of file from its name
|
172 |
-
for file_name in vector_stores:
|
173 |
-
file_name = file_name.split(".")[0]
|
174 |
-
file_elements = file_name.split("_")
|
175 |
-
file_start_date, file_end_date, file_party = file_elements[1], file_elements[2], file_elements[3]
|
176 |
-
|
177 |
-
if file_party == party and file_start_date <= start_date:
|
178 |
-
None
|
|
|
1 |
from langchain_community.document_loaders import DataFrameLoader
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
+
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
from langchain.chains import create_retrieval_chain
|
8 |
+
|
9 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
10 |
+
from faiss import IndexFlatL2
|
11 |
+
|
12 |
#import functools
|
13 |
|
14 |
import pandas as pd
|
|
|
62 |
"""
|
63 |
Combine multiple FAISS vector stores into a single vector store based on the specified inputs.
|
64 |
|
65 |
+
Parameters
|
66 |
----------
|
67 |
inputs : list of str
|
68 |
A list of strings specifying which vector stores to combine. Each string represents a specific
|
69 |
+
index or a special keyword "All". If "All" is the first entry in the list,
|
70 |
+
it directly return the pre-defined vectorstore for all speeches
|
71 |
|
72 |
embeddings : Embeddings
|
73 |
An instance of embeddings that will be used to load the vector stores. The specific type and
|
74 |
structure of `embeddings` depend on the implementation of the `get_vectorstore` function.
|
75 |
|
76 |
+
Returns
|
77 |
-------
|
78 |
FAISS
|
79 |
A FAISS vector store that combines the specified indices into a single vector store.
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
"""
|
82 |
|
83 |
# Default folder path
|
84 |
folder_path = "./src/FAISS"
|
85 |
|
86 |
+
if inputs[0] == "All" or inputs[0] is None:
|
|
|
|
|
|
|
87 |
return db_all
|
|
|
88 |
|
89 |
# Initialize empty db
|
90 |
+
embedding_function = embeddings
|
91 |
+
dimensions = len(embedding_function.embed_query("dummy"))
|
92 |
|
93 |
db = FAISS(
|
94 |
embedding_function=embedding_function,
|
|
|
100 |
|
101 |
# Retrieve inputs: 20. Legislaturperiode, 19. Legislaturperiode, ...
|
102 |
for input in inputs:
|
103 |
+
# Ignore if user also selected All among other legislatures
|
104 |
+
if input == "All":
|
105 |
+
continue
|
106 |
# Retrieve selected index and merge vector stores
|
107 |
index = input.split(".")[0]
|
108 |
index_name = f'{index}_legislature'
|
109 |
local_db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
110 |
+
embeddings=embeddings, allow_dangerous_deserialization=True)
|
111 |
db.merge_from(local_db)
|
112 |
+
print('Successfully merged inputs')
|
113 |
return db
|
114 |
|
115 |
|
116 |
|
117 |
+
|
118 |
def RAG(llm, prompt, db, question):
|
119 |
"""
|
120 |
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
|
|
150 |
|
151 |
return response
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|