Text inferencing implemented
Browse files
app.py
CHANGED
@@ -1,9 +1,45 @@
|
|
1 |
-
import
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
def textMode(text, count):
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def imageMode(image, question):
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
class _MLPVectorProjector(nn.Module):
|
8 |
+
def __init__(
|
9 |
+
self, input_hidden_size: int, lm_hidden_size: int, num_layers: int, width: int
|
10 |
+
):
|
11 |
+
super(_MLPVectorProjector, self).__init__()
|
12 |
+
self.mlps = nn.ModuleList()
|
13 |
+
for _ in range(width):
|
14 |
+
mlp = [nn.Linear(input_hidden_size, lm_hidden_size, bias=False)]
|
15 |
+
for _ in range(1, num_layers):
|
16 |
+
mlp.append(nn.GELU())
|
17 |
+
mlp.append(nn.Linear(lm_hidden_size, lm_hidden_size, bias=False))
|
18 |
+
self.mlps.append(nn.Sequential(*mlp))
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
return torch.cat([mlp(x) for mlp in self.mlps], dim=-2)
|
22 |
+
|
23 |
+
model_name = "microsoft/phi-2"
|
24 |
+
|
25 |
+
phi2_text = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
26 |
+
torch_dtype = torch.float16)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
|
29 |
|
30 |
def textMode(text, count):
|
31 |
+
count = int(count)
|
32 |
+
inputs = tokenizer(text, return_tensors="pt")
|
33 |
+
prediction = tokenizer.batch_decode(
|
34 |
+
phi2_text.generate(
|
35 |
+
**inputs,
|
36 |
+
max_new_tokens=500,
|
37 |
+
bos_token_id=tokenizer.bos_token_id,
|
38 |
+
eos_token_id=tokenizer.eos_token_id,
|
39 |
+
pad_token_id=tokenizer.pad_token_id
|
40 |
+
)
|
41 |
+
return prediction[0].rstrip('<|endoftext|>').rstrip("\n")[:count]
|
42 |
+
|
43 |
|
44 |
|
45 |
def imageMode(image, question):
|