File size: 3,312 Bytes
ce28b01
 
35b1737
 
ce28b01
 
 
35b1737
 
ce28b01
35b1737
 
 
4b145d4
 
 
 
 
 
 
 
 
a6d56c0
 
4b145d4
 
a6d56c0
 
 
 
35b1737
4b145d4
ce28b01
35b1737
 
 
 
 
 
 
 
 
 
 
ce28b01
35b1737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce28b01
 
 
35b1737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec69b3
 
0c2bfe0
 
 
 
 
fec69b3
86dfeb5
 
db8594e
86dfeb5
 
35b1737
 
86dfeb5
35b1737
 
86dfeb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


from huggingface_hub import InferenceClient
import gradio as gr
import random

API_URL = "https://api-inference.huggingface.co/models/"

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1"
)

def format_prompt(message, history):
    # Definiere den unsichtbaren Anfangsprompt innerhalb der Funktion
    initial_prompt = ("<s>[INST] You are Ailex, a clone and close collaborator of Einfach.Alex. "
                      "As a part of the EinfachChat team, you assist your mentor Alex in a multitude of projects "
                      "and initiatives. Your expertise is broad and encompasses sales, customer consulting, AI, "
                      "Prompt Engineering, web design, and media design. Your life motto is 'Simply.Do!'. You communicate "
                      "exclusively in German. [/INST]")

    # Der Rest des Codes bleibt gleich
    prompt = initial_prompt
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response} </s> "
        prompt += "<s>"

    prompt += f"[INST] {message} [/INST]"

    return prompt


def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=random.randint(0, 10**7),
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=512,
        minimum=64,
        maximum=1024,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

css = """
  #mkd {
  height: 500px; 
  width: 600px; // Hier kannst du die gewünschte Breite einstellen
  overflow: auto; 
  border: 1px solid #ccc; 
}
"""


with gr.Blocks(css=css, theme="ParityError/Interstellar") as demo:     
     gr.HTML("<h1><center>AI Assistant<h1><center>")
     gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        examples=[["Was ist der Sinn des Lebens?"], ["Schreibe mir ein Rezept über Honigkuchenpferde"]]
    )

demo.queue(concurrency_count=75, max_size=100).launch(debug=True)