import gradio as gr from diffusers import DiffusionPipeline # 加载模型到 CPU model_repo_id = "stabilityai/stable-diffusion-3.5-large" pipe = DiffusionPipeline.from_pretrained(model_repo_id) pipe.to("cpu") # 使用 CPU # 定义图像生成函数,允许自定义宽度和高度 def generate_image(prompt, width=1024, height=768, guidance_scale=7.5, num_inference_steps=40): image = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps ).images[0] return image # 设置 Gradio 界面 with gr.Blocks() as demo: gr.Markdown(" # Stable Diffusion 3.5 - 自定义宽高比例") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here") # 用户自定义宽度和高度 width = gr.Slider(label="Width", minimum=512, maximum=1024, step=64, value=1024) height = gr.Slider(label="Height", minimum=512, maximum=1024, step=64, value=768) guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=15.0, step=0.1, value=7.5) num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=40) output_image = gr.Image(label="Generated Image") # 点击按钮生成图像 generate_btn = gr.Button("Generate") generate_btn.click(generate_image, inputs=[prompt, width, height, guidance_scale, num_inference_steps], outputs=output_image) # 启动 Gradio 界面 demo.launch()