File size: 1,005 Bytes
81b8cf7
 
 
 
06d806f
 
81b8cf7
 
 
788669e
81b8cf7
7b5145c
81b8cf7
788669e
 
 
 
81b8cf7
788669e
 
880c111
06d806f
 
81b8cf7
 
 
788669e
7c90d11
ce0e38c
06d806f
 
788669e
 
7c90d11
06d806f
 
788669e
81b8cf7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import gradio as gr
from transformers import pipeline

title = "Speech to text for German"

pipeline = pipeline(task="automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-german")
#pipeline = pipeline(task="automatic-speech-recognition", model="openai/whisper-large")

def transcribeFile(audio_path : str) -> str:
    transcription = pipeline(audio_path)
    return transcription["text"]

def transcribeMic(audio):
    sr, data = audio
    transcription = pipeline(data)
    return transcription["text"]

app1 = gr.Interface(
    fn=transcribeFile,
    inputs=[gr.inputs.Audio(label="Upload audio file", type="filepath"), gr.Audio(source="microphone", type="filepath")],
    outputs="text",
    title=title
)


app2 = gr.Interface(
    fn=transcribeFile,
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title=title
)



demo = gr.TabbedInterface([app1, app2], ["Audio File", "Microphone"])

if __name__ == "__main__":
    demo.launch()