wtx-mmlab commited on
Commit
069c5f0
·
1 Parent(s): 661ec85

init commit

Browse files
Files changed (32) hide show
  1. animatediff/data/dataset.py +98 -0
  2. animatediff/models/attention.py +300 -0
  3. animatediff/models/motion_module.py +331 -0
  4. animatediff/models/resnet.py +217 -0
  5. animatediff/models/unet.py +497 -0
  6. animatediff/models/unet_blocks.py +760 -0
  7. animatediff/pipelines/pipeline_animation.py +656 -0
  8. animatediff/utils/convert_from_ckpt.py +959 -0
  9. animatediff/utils/convert_lora_safetensor_to_diffusers.py +154 -0
  10. animatediff/utils/freeinit_utils.py +140 -0
  11. animatediff/utils/util.py +157 -0
  12. app.py +488 -0
  13. configs/inference/inference-v1.yaml +26 -0
  14. configs/inference/inference-v2.yaml +27 -0
  15. configs/prompts/1-ToonYou.yaml +23 -0
  16. configs/prompts/2-Lyriel.yaml +23 -0
  17. configs/prompts/3-RcnzCartoon.yaml +23 -0
  18. configs/prompts/4-MajicMix.yaml +23 -0
  19. configs/prompts/5-RealisticVision.yaml +23 -0
  20. configs/prompts/6-Tusun.yaml +21 -0
  21. configs/prompts/7-FilmVelvia.yaml +24 -0
  22. configs/prompts/8-GhibliBackground.yaml +21 -0
  23. configs/prompts/freeinit_examples/RcnzCartoon_v2.yaml +33 -0
  24. configs/prompts/freeinit_examples/RealisticVision_v1.yaml +32 -0
  25. configs/prompts/freeinit_examples/RealisticVision_v2.yaml +37 -0
  26. configs/prompts/v2/5-RealisticVision-MotionLoRA.yaml +189 -0
  27. configs/prompts/v2/5-RealisticVision.yaml +23 -0
  28. models/DreamBooth_LoRA/Put personalized T2I checkpoints here.txt +0 -0
  29. models/MotionLoRA/Put MotionLoRA checkpoints here.txt +0 -0
  30. models/Motion_Module/Put motion module checkpoints here.txt +0 -0
  31. models/StableDiffusion/Put diffusers stable-diffusion-v1-5 repo here.txt +0 -0
  32. requirements.txt +15 -0
animatediff/data/dataset.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, io, csv, math, random
2
+ import numpy as np
3
+ from einops import rearrange
4
+ from decord import VideoReader
5
+
6
+ import torch
7
+ import torchvision.transforms as transforms
8
+ from torch.utils.data.dataset import Dataset
9
+ from animatediff.utils.util import zero_rank_print
10
+
11
+
12
+
13
+ class WebVid10M(Dataset):
14
+ def __init__(
15
+ self,
16
+ csv_path, video_folder,
17
+ sample_size=256, sample_stride=4, sample_n_frames=16,
18
+ is_image=False,
19
+ ):
20
+ zero_rank_print(f"loading annotations from {csv_path} ...")
21
+ with open(csv_path, 'r') as csvfile:
22
+ self.dataset = list(csv.DictReader(csvfile))
23
+ self.length = len(self.dataset)
24
+ zero_rank_print(f"data scale: {self.length}")
25
+
26
+ self.video_folder = video_folder
27
+ self.sample_stride = sample_stride
28
+ self.sample_n_frames = sample_n_frames
29
+ self.is_image = is_image
30
+
31
+ sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
32
+ self.pixel_transforms = transforms.Compose([
33
+ transforms.RandomHorizontalFlip(),
34
+ transforms.Resize(sample_size[0]),
35
+ transforms.CenterCrop(sample_size),
36
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
37
+ ])
38
+
39
+ def get_batch(self, idx):
40
+ video_dict = self.dataset[idx]
41
+ videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
42
+
43
+ video_dir = os.path.join(self.video_folder, f"{videoid}.mp4")
44
+ video_reader = VideoReader(video_dir)
45
+ video_length = len(video_reader)
46
+
47
+ if not self.is_image:
48
+ clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
49
+ start_idx = random.randint(0, video_length - clip_length)
50
+ batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
51
+ else:
52
+ batch_index = [random.randint(0, video_length - 1)]
53
+
54
+ pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
55
+ pixel_values = pixel_values / 255.
56
+ del video_reader
57
+
58
+ if self.is_image:
59
+ pixel_values = pixel_values[0]
60
+
61
+ return pixel_values, name
62
+
63
+ def __len__(self):
64
+ return self.length
65
+
66
+ def __getitem__(self, idx):
67
+ while True:
68
+ try:
69
+ pixel_values, name = self.get_batch(idx)
70
+ break
71
+
72
+ except Exception as e:
73
+ idx = random.randint(0, self.length-1)
74
+
75
+ pixel_values = self.pixel_transforms(pixel_values)
76
+ sample = dict(pixel_values=pixel_values, text=name)
77
+ return sample
78
+
79
+
80
+
81
+ if __name__ == "__main__":
82
+ from animatediff.utils.util import save_videos_grid
83
+
84
+ dataset = WebVid10M(
85
+ csv_path="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv",
86
+ video_folder="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val",
87
+ sample_size=256,
88
+ sample_stride=4, sample_n_frames=16,
89
+ is_image=True,
90
+ )
91
+ import pdb
92
+ pdb.set_trace()
93
+
94
+ dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=16,)
95
+ for idx, batch in enumerate(dataloader):
96
+ print(batch["pixel_values"].shape, len(batch["text"]))
97
+ # for i in range(batch["pixel_values"].shape[0]):
98
+ # save_videos_grid(batch["pixel_values"][i:i+1].permute(0,2,1,3,4), os.path.join(".", f"{idx}-{i}.mp4"), rescale=True)
animatediff/models/attention.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import Optional
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.modeling_utils import ModelMixin
12
+ from diffusers.utils import BaseOutput
13
+ from diffusers.utils.import_utils import is_xformers_available
14
+ from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
+
16
+ from einops import rearrange, repeat
17
+ import pdb
18
+
19
+ @dataclass
20
+ class Transformer3DModelOutput(BaseOutput):
21
+ sample: torch.FloatTensor
22
+
23
+
24
+ if is_xformers_available():
25
+ import xformers
26
+ import xformers.ops
27
+ else:
28
+ xformers = None
29
+
30
+
31
+ class Transformer3DModel(ModelMixin, ConfigMixin):
32
+ @register_to_config
33
+ def __init__(
34
+ self,
35
+ num_attention_heads: int = 16,
36
+ attention_head_dim: int = 88,
37
+ in_channels: Optional[int] = None,
38
+ num_layers: int = 1,
39
+ dropout: float = 0.0,
40
+ norm_num_groups: int = 32,
41
+ cross_attention_dim: Optional[int] = None,
42
+ attention_bias: bool = False,
43
+ activation_fn: str = "geglu",
44
+ num_embeds_ada_norm: Optional[int] = None,
45
+ use_linear_projection: bool = False,
46
+ only_cross_attention: bool = False,
47
+ upcast_attention: bool = False,
48
+
49
+ unet_use_cross_frame_attention=None,
50
+ unet_use_temporal_attention=None,
51
+ ):
52
+ super().__init__()
53
+ self.use_linear_projection = use_linear_projection
54
+ self.num_attention_heads = num_attention_heads
55
+ self.attention_head_dim = attention_head_dim
56
+ inner_dim = num_attention_heads * attention_head_dim
57
+
58
+ # Define input layers
59
+ self.in_channels = in_channels
60
+
61
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
62
+ if use_linear_projection:
63
+ self.proj_in = nn.Linear(in_channels, inner_dim)
64
+ else:
65
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
66
+
67
+ # Define transformers blocks
68
+ self.transformer_blocks = nn.ModuleList(
69
+ [
70
+ BasicTransformerBlock(
71
+ inner_dim,
72
+ num_attention_heads,
73
+ attention_head_dim,
74
+ dropout=dropout,
75
+ cross_attention_dim=cross_attention_dim,
76
+ activation_fn=activation_fn,
77
+ num_embeds_ada_norm=num_embeds_ada_norm,
78
+ attention_bias=attention_bias,
79
+ only_cross_attention=only_cross_attention,
80
+ upcast_attention=upcast_attention,
81
+
82
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
83
+ unet_use_temporal_attention=unet_use_temporal_attention,
84
+ )
85
+ for d in range(num_layers)
86
+ ]
87
+ )
88
+
89
+ # 4. Define output layers
90
+ if use_linear_projection:
91
+ self.proj_out = nn.Linear(in_channels, inner_dim)
92
+ else:
93
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
94
+
95
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
96
+ # Input
97
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
98
+ video_length = hidden_states.shape[2]
99
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
100
+ encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
101
+
102
+ batch, channel, height, weight = hidden_states.shape
103
+ residual = hidden_states
104
+
105
+ hidden_states = self.norm(hidden_states)
106
+ if not self.use_linear_projection:
107
+ hidden_states = self.proj_in(hidden_states)
108
+ inner_dim = hidden_states.shape[1]
109
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
110
+ else:
111
+ inner_dim = hidden_states.shape[1]
112
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
113
+ hidden_states = self.proj_in(hidden_states)
114
+
115
+ # Blocks
116
+ for block in self.transformer_blocks:
117
+ hidden_states = block(
118
+ hidden_states,
119
+ encoder_hidden_states=encoder_hidden_states,
120
+ timestep=timestep,
121
+ video_length=video_length
122
+ )
123
+
124
+ # Output
125
+ if not self.use_linear_projection:
126
+ hidden_states = (
127
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
+ )
129
+ hidden_states = self.proj_out(hidden_states)
130
+ else:
131
+ hidden_states = self.proj_out(hidden_states)
132
+ hidden_states = (
133
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
134
+ )
135
+
136
+ output = hidden_states + residual
137
+
138
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
139
+ if not return_dict:
140
+ return (output,)
141
+
142
+ return Transformer3DModelOutput(sample=output)
143
+
144
+
145
+ class BasicTransformerBlock(nn.Module):
146
+ def __init__(
147
+ self,
148
+ dim: int,
149
+ num_attention_heads: int,
150
+ attention_head_dim: int,
151
+ dropout=0.0,
152
+ cross_attention_dim: Optional[int] = None,
153
+ activation_fn: str = "geglu",
154
+ num_embeds_ada_norm: Optional[int] = None,
155
+ attention_bias: bool = False,
156
+ only_cross_attention: bool = False,
157
+ upcast_attention: bool = False,
158
+
159
+ unet_use_cross_frame_attention = None,
160
+ unet_use_temporal_attention = None,
161
+ ):
162
+ super().__init__()
163
+ self.only_cross_attention = only_cross_attention
164
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
165
+ self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
166
+ self.unet_use_temporal_attention = unet_use_temporal_attention
167
+
168
+ # SC-Attn
169
+ assert unet_use_cross_frame_attention is not None
170
+ if unet_use_cross_frame_attention:
171
+ self.attn1 = SparseCausalAttention2D(
172
+ query_dim=dim,
173
+ heads=num_attention_heads,
174
+ dim_head=attention_head_dim,
175
+ dropout=dropout,
176
+ bias=attention_bias,
177
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
178
+ upcast_attention=upcast_attention,
179
+ )
180
+ else:
181
+ self.attn1 = CrossAttention(
182
+ query_dim=dim,
183
+ heads=num_attention_heads,
184
+ dim_head=attention_head_dim,
185
+ dropout=dropout,
186
+ bias=attention_bias,
187
+ upcast_attention=upcast_attention,
188
+ )
189
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
190
+
191
+ # Cross-Attn
192
+ if cross_attention_dim is not None:
193
+ self.attn2 = CrossAttention(
194
+ query_dim=dim,
195
+ cross_attention_dim=cross_attention_dim,
196
+ heads=num_attention_heads,
197
+ dim_head=attention_head_dim,
198
+ dropout=dropout,
199
+ bias=attention_bias,
200
+ upcast_attention=upcast_attention,
201
+ )
202
+ else:
203
+ self.attn2 = None
204
+
205
+ if cross_attention_dim is not None:
206
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
207
+ else:
208
+ self.norm2 = None
209
+
210
+ # Feed-forward
211
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
212
+ self.norm3 = nn.LayerNorm(dim)
213
+
214
+ # Temp-Attn
215
+ assert unet_use_temporal_attention is not None
216
+ if unet_use_temporal_attention:
217
+ self.attn_temp = CrossAttention(
218
+ query_dim=dim,
219
+ heads=num_attention_heads,
220
+ dim_head=attention_head_dim,
221
+ dropout=dropout,
222
+ bias=attention_bias,
223
+ upcast_attention=upcast_attention,
224
+ )
225
+ nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
226
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
227
+
228
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
229
+ if not is_xformers_available():
230
+ print("Here is how to install it")
231
+ raise ModuleNotFoundError(
232
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
233
+ " xformers",
234
+ name="xformers",
235
+ )
236
+ elif not torch.cuda.is_available():
237
+ raise ValueError(
238
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
239
+ " available for GPU "
240
+ )
241
+ else:
242
+ try:
243
+ # Make sure we can run the memory efficient attention
244
+ _ = xformers.ops.memory_efficient_attention(
245
+ torch.randn((1, 2, 40), device="cuda"),
246
+ torch.randn((1, 2, 40), device="cuda"),
247
+ torch.randn((1, 2, 40), device="cuda"),
248
+ )
249
+ except Exception as e:
250
+ raise e
251
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
252
+ if self.attn2 is not None:
253
+ self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
254
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
255
+
256
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
257
+ # SparseCausal-Attention
258
+ norm_hidden_states = (
259
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
260
+ )
261
+
262
+ # if self.only_cross_attention:
263
+ # hidden_states = (
264
+ # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
265
+ # )
266
+ # else:
267
+ # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
268
+
269
+ # pdb.set_trace()
270
+ if self.unet_use_cross_frame_attention:
271
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
272
+ else:
273
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
274
+
275
+ if self.attn2 is not None:
276
+ # Cross-Attention
277
+ norm_hidden_states = (
278
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
279
+ )
280
+ hidden_states = (
281
+ self.attn2(
282
+ norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
283
+ )
284
+ + hidden_states
285
+ )
286
+
287
+ # Feed-forward
288
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
289
+
290
+ # Temporal-Attention
291
+ if self.unet_use_temporal_attention:
292
+ d = hidden_states.shape[1]
293
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
294
+ norm_hidden_states = (
295
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
296
+ )
297
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
298
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
299
+
300
+ return hidden_states
animatediff/models/motion_module.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import numpy as np
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+ import torchvision
9
+
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.modeling_utils import ModelMixin
12
+ from diffusers.utils import BaseOutput
13
+ from diffusers.utils.import_utils import is_xformers_available
14
+ from diffusers.models.attention import CrossAttention, FeedForward
15
+
16
+ from einops import rearrange, repeat
17
+ import math
18
+
19
+
20
+ def zero_module(module):
21
+ # Zero out the parameters of a module and return it.
22
+ for p in module.parameters():
23
+ p.detach().zero_()
24
+ return module
25
+
26
+
27
+ @dataclass
28
+ class TemporalTransformer3DModelOutput(BaseOutput):
29
+ sample: torch.FloatTensor
30
+
31
+
32
+ if is_xformers_available():
33
+ import xformers
34
+ import xformers.ops
35
+ else:
36
+ xformers = None
37
+
38
+
39
+ def get_motion_module(
40
+ in_channels,
41
+ motion_module_type: str,
42
+ motion_module_kwargs: dict
43
+ ):
44
+ if motion_module_type == "Vanilla":
45
+ return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,)
46
+ else:
47
+ raise ValueError
48
+
49
+
50
+ class VanillaTemporalModule(nn.Module):
51
+ def __init__(
52
+ self,
53
+ in_channels,
54
+ num_attention_heads = 8,
55
+ num_transformer_block = 2,
56
+ attention_block_types =( "Temporal_Self", "Temporal_Self" ),
57
+ cross_frame_attention_mode = None,
58
+ temporal_position_encoding = False,
59
+ temporal_position_encoding_max_len = 24,
60
+ temporal_attention_dim_div = 1,
61
+ zero_initialize = True,
62
+ ):
63
+ super().__init__()
64
+
65
+ self.temporal_transformer = TemporalTransformer3DModel(
66
+ in_channels=in_channels,
67
+ num_attention_heads=num_attention_heads,
68
+ attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
69
+ num_layers=num_transformer_block,
70
+ attention_block_types=attention_block_types,
71
+ cross_frame_attention_mode=cross_frame_attention_mode,
72
+ temporal_position_encoding=temporal_position_encoding,
73
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
74
+ )
75
+
76
+ if zero_initialize:
77
+ self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
78
+
79
+ def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
80
+ hidden_states = input_tensor
81
+ hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
82
+
83
+ output = hidden_states
84
+ return output
85
+
86
+
87
+ class TemporalTransformer3DModel(nn.Module):
88
+ def __init__(
89
+ self,
90
+ in_channels,
91
+ num_attention_heads,
92
+ attention_head_dim,
93
+
94
+ num_layers,
95
+ attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
96
+ dropout = 0.0,
97
+ norm_num_groups = 32,
98
+ cross_attention_dim = 768,
99
+ activation_fn = "geglu",
100
+ attention_bias = False,
101
+ upcast_attention = False,
102
+
103
+ cross_frame_attention_mode = None,
104
+ temporal_position_encoding = False,
105
+ temporal_position_encoding_max_len = 24,
106
+ ):
107
+ super().__init__()
108
+
109
+ inner_dim = num_attention_heads * attention_head_dim
110
+
111
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
112
+ self.proj_in = nn.Linear(in_channels, inner_dim)
113
+
114
+ self.transformer_blocks = nn.ModuleList(
115
+ [
116
+ TemporalTransformerBlock(
117
+ dim=inner_dim,
118
+ num_attention_heads=num_attention_heads,
119
+ attention_head_dim=attention_head_dim,
120
+ attention_block_types=attention_block_types,
121
+ dropout=dropout,
122
+ norm_num_groups=norm_num_groups,
123
+ cross_attention_dim=cross_attention_dim,
124
+ activation_fn=activation_fn,
125
+ attention_bias=attention_bias,
126
+ upcast_attention=upcast_attention,
127
+ cross_frame_attention_mode=cross_frame_attention_mode,
128
+ temporal_position_encoding=temporal_position_encoding,
129
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
130
+ )
131
+ for d in range(num_layers)
132
+ ]
133
+ )
134
+ self.proj_out = nn.Linear(inner_dim, in_channels)
135
+
136
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
137
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
138
+ video_length = hidden_states.shape[2]
139
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
140
+
141
+ batch, channel, height, weight = hidden_states.shape
142
+ residual = hidden_states
143
+
144
+ hidden_states = self.norm(hidden_states)
145
+ inner_dim = hidden_states.shape[1]
146
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
147
+ hidden_states = self.proj_in(hidden_states)
148
+
149
+ # Transformer Blocks
150
+ for block in self.transformer_blocks:
151
+ hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
152
+
153
+ # output
154
+ hidden_states = self.proj_out(hidden_states)
155
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
156
+
157
+ output = hidden_states + residual
158
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
159
+
160
+ return output
161
+
162
+
163
+ class TemporalTransformerBlock(nn.Module):
164
+ def __init__(
165
+ self,
166
+ dim,
167
+ num_attention_heads,
168
+ attention_head_dim,
169
+ attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
170
+ dropout = 0.0,
171
+ norm_num_groups = 32,
172
+ cross_attention_dim = 768,
173
+ activation_fn = "geglu",
174
+ attention_bias = False,
175
+ upcast_attention = False,
176
+ cross_frame_attention_mode = None,
177
+ temporal_position_encoding = False,
178
+ temporal_position_encoding_max_len = 24,
179
+ ):
180
+ super().__init__()
181
+
182
+ attention_blocks = []
183
+ norms = []
184
+
185
+ for block_name in attention_block_types:
186
+ attention_blocks.append(
187
+ VersatileAttention(
188
+ attention_mode=block_name.split("_")[0],
189
+ cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
190
+
191
+ query_dim=dim,
192
+ heads=num_attention_heads,
193
+ dim_head=attention_head_dim,
194
+ dropout=dropout,
195
+ bias=attention_bias,
196
+ upcast_attention=upcast_attention,
197
+
198
+ cross_frame_attention_mode=cross_frame_attention_mode,
199
+ temporal_position_encoding=temporal_position_encoding,
200
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
201
+ )
202
+ )
203
+ norms.append(nn.LayerNorm(dim))
204
+
205
+ self.attention_blocks = nn.ModuleList(attention_blocks)
206
+ self.norms = nn.ModuleList(norms)
207
+
208
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
209
+ self.ff_norm = nn.LayerNorm(dim)
210
+
211
+
212
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
213
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
214
+ norm_hidden_states = norm(hidden_states)
215
+ hidden_states = attention_block(
216
+ norm_hidden_states,
217
+ encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
218
+ video_length=video_length,
219
+ ) + hidden_states
220
+
221
+ hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
222
+
223
+ output = hidden_states
224
+ return output
225
+
226
+
227
+ class PositionalEncoding(nn.Module):
228
+ def __init__(
229
+ self,
230
+ d_model,
231
+ dropout = 0.,
232
+ max_len = 24
233
+ ):
234
+ super().__init__()
235
+ self.dropout = nn.Dropout(p=dropout)
236
+ position = torch.arange(max_len).unsqueeze(1)
237
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
238
+ pe = torch.zeros(1, max_len, d_model)
239
+ pe[0, :, 0::2] = torch.sin(position * div_term)
240
+ pe[0, :, 1::2] = torch.cos(position * div_term)
241
+ self.register_buffer('pe', pe)
242
+
243
+ def forward(self, x):
244
+ x = x + self.pe[:, :x.size(1)]
245
+ return self.dropout(x)
246
+
247
+
248
+ class VersatileAttention(CrossAttention):
249
+ def __init__(
250
+ self,
251
+ attention_mode = None,
252
+ cross_frame_attention_mode = None,
253
+ temporal_position_encoding = False,
254
+ temporal_position_encoding_max_len = 24,
255
+ *args, **kwargs
256
+ ):
257
+ super().__init__(*args, **kwargs)
258
+ assert attention_mode == "Temporal"
259
+
260
+ self.attention_mode = attention_mode
261
+ self.is_cross_attention = kwargs["cross_attention_dim"] is not None
262
+
263
+ self.pos_encoder = PositionalEncoding(
264
+ kwargs["query_dim"],
265
+ dropout=0.,
266
+ max_len=temporal_position_encoding_max_len
267
+ ) if (temporal_position_encoding and attention_mode == "Temporal") else None
268
+
269
+ def extra_repr(self):
270
+ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
271
+
272
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
273
+ batch_size, sequence_length, _ = hidden_states.shape
274
+
275
+ if self.attention_mode == "Temporal":
276
+ d = hidden_states.shape[1]
277
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
278
+
279
+ if self.pos_encoder is not None:
280
+ hidden_states = self.pos_encoder(hidden_states)
281
+
282
+ encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
283
+ else:
284
+ raise NotImplementedError
285
+
286
+ encoder_hidden_states = encoder_hidden_states
287
+
288
+ if self.group_norm is not None:
289
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
290
+
291
+ query = self.to_q(hidden_states)
292
+ dim = query.shape[-1]
293
+ query = self.reshape_heads_to_batch_dim(query)
294
+
295
+ if self.added_kv_proj_dim is not None:
296
+ raise NotImplementedError
297
+
298
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
299
+ key = self.to_k(encoder_hidden_states)
300
+ value = self.to_v(encoder_hidden_states)
301
+
302
+ key = self.reshape_heads_to_batch_dim(key)
303
+ value = self.reshape_heads_to_batch_dim(value)
304
+
305
+ if attention_mask is not None:
306
+ if attention_mask.shape[-1] != query.shape[1]:
307
+ target_length = query.shape[1]
308
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
309
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
310
+
311
+ # attention, what we cannot get enough of
312
+ if self._use_memory_efficient_attention_xformers:
313
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
314
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
315
+ hidden_states = hidden_states.to(query.dtype)
316
+ else:
317
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
318
+ hidden_states = self._attention(query, key, value, attention_mask)
319
+ else:
320
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
321
+
322
+ # linear proj
323
+ hidden_states = self.to_out[0](hidden_states)
324
+
325
+ # dropout
326
+ hidden_states = self.to_out[1](hidden_states)
327
+
328
+ if self.attention_mode == "Temporal":
329
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
330
+
331
+ return hidden_states
animatediff/models/resnet.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from einops import rearrange
8
+
9
+
10
+ class InflatedConv3d(nn.Conv2d):
11
+ def forward(self, x):
12
+ video_length = x.shape[2]
13
+
14
+ x = rearrange(x, "b c f h w -> (b f) c h w")
15
+ x = super().forward(x)
16
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
+
18
+ return x
19
+
20
+
21
+ class InflatedGroupNorm(nn.GroupNorm):
22
+ def forward(self, x):
23
+ video_length = x.shape[2]
24
+
25
+ x = rearrange(x, "b c f h w -> (b f) c h w")
26
+ x = super().forward(x)
27
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
28
+
29
+ return x
30
+
31
+
32
+ class Upsample3D(nn.Module):
33
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
34
+ super().__init__()
35
+ self.channels = channels
36
+ self.out_channels = out_channels or channels
37
+ self.use_conv = use_conv
38
+ self.use_conv_transpose = use_conv_transpose
39
+ self.name = name
40
+
41
+ conv = None
42
+ if use_conv_transpose:
43
+ raise NotImplementedError
44
+ elif use_conv:
45
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
46
+
47
+ def forward(self, hidden_states, output_size=None):
48
+ assert hidden_states.shape[1] == self.channels
49
+
50
+ if self.use_conv_transpose:
51
+ raise NotImplementedError
52
+
53
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
54
+ dtype = hidden_states.dtype
55
+ if dtype == torch.bfloat16:
56
+ hidden_states = hidden_states.to(torch.float32)
57
+
58
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
59
+ if hidden_states.shape[0] >= 64:
60
+ hidden_states = hidden_states.contiguous()
61
+
62
+ # if `output_size` is passed we force the interpolation output
63
+ # size and do not make use of `scale_factor=2`
64
+ if output_size is None:
65
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
66
+ else:
67
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
68
+
69
+ # If the input is bfloat16, we cast back to bfloat16
70
+ if dtype == torch.bfloat16:
71
+ hidden_states = hidden_states.to(dtype)
72
+
73
+ # if self.use_conv:
74
+ # if self.name == "conv":
75
+ # hidden_states = self.conv(hidden_states)
76
+ # else:
77
+ # hidden_states = self.Conv2d_0(hidden_states)
78
+ hidden_states = self.conv(hidden_states)
79
+
80
+ return hidden_states
81
+
82
+
83
+ class Downsample3D(nn.Module):
84
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
85
+ super().__init__()
86
+ self.channels = channels
87
+ self.out_channels = out_channels or channels
88
+ self.use_conv = use_conv
89
+ self.padding = padding
90
+ stride = 2
91
+ self.name = name
92
+
93
+ if use_conv:
94
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
95
+ else:
96
+ raise NotImplementedError
97
+
98
+ def forward(self, hidden_states):
99
+ assert hidden_states.shape[1] == self.channels
100
+ if self.use_conv and self.padding == 0:
101
+ raise NotImplementedError
102
+
103
+ assert hidden_states.shape[1] == self.channels
104
+ hidden_states = self.conv(hidden_states)
105
+
106
+ return hidden_states
107
+
108
+
109
+ class ResnetBlock3D(nn.Module):
110
+ def __init__(
111
+ self,
112
+ *,
113
+ in_channels,
114
+ out_channels=None,
115
+ conv_shortcut=False,
116
+ dropout=0.0,
117
+ temb_channels=512,
118
+ groups=32,
119
+ groups_out=None,
120
+ pre_norm=True,
121
+ eps=1e-6,
122
+ non_linearity="swish",
123
+ time_embedding_norm="default",
124
+ output_scale_factor=1.0,
125
+ use_in_shortcut=None,
126
+ use_inflated_groupnorm=None,
127
+ ):
128
+ super().__init__()
129
+ self.pre_norm = pre_norm
130
+ self.pre_norm = True
131
+ self.in_channels = in_channels
132
+ out_channels = in_channels if out_channels is None else out_channels
133
+ self.out_channels = out_channels
134
+ self.use_conv_shortcut = conv_shortcut
135
+ self.time_embedding_norm = time_embedding_norm
136
+ self.output_scale_factor = output_scale_factor
137
+
138
+ if groups_out is None:
139
+ groups_out = groups
140
+
141
+ assert use_inflated_groupnorm != None
142
+ if use_inflated_groupnorm:
143
+ self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
144
+ else:
145
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
146
+
147
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
148
+
149
+ if temb_channels is not None:
150
+ if self.time_embedding_norm == "default":
151
+ time_emb_proj_out_channels = out_channels
152
+ elif self.time_embedding_norm == "scale_shift":
153
+ time_emb_proj_out_channels = out_channels * 2
154
+ else:
155
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
156
+
157
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
158
+ else:
159
+ self.time_emb_proj = None
160
+
161
+ if use_inflated_groupnorm:
162
+ self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
163
+ else:
164
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
165
+
166
+ self.dropout = torch.nn.Dropout(dropout)
167
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
168
+
169
+ if non_linearity == "swish":
170
+ self.nonlinearity = lambda x: F.silu(x)
171
+ elif non_linearity == "mish":
172
+ self.nonlinearity = Mish()
173
+ elif non_linearity == "silu":
174
+ self.nonlinearity = nn.SiLU()
175
+
176
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
177
+
178
+ self.conv_shortcut = None
179
+ if self.use_in_shortcut:
180
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
181
+
182
+ def forward(self, input_tensor, temb):
183
+ hidden_states = input_tensor
184
+
185
+ hidden_states = self.norm1(hidden_states)
186
+ hidden_states = self.nonlinearity(hidden_states)
187
+
188
+ hidden_states = self.conv1(hidden_states)
189
+
190
+ if temb is not None:
191
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
192
+
193
+ if temb is not None and self.time_embedding_norm == "default":
194
+ hidden_states = hidden_states + temb
195
+
196
+ hidden_states = self.norm2(hidden_states)
197
+
198
+ if temb is not None and self.time_embedding_norm == "scale_shift":
199
+ scale, shift = torch.chunk(temb, 2, dim=1)
200
+ hidden_states = hidden_states * (1 + scale) + shift
201
+
202
+ hidden_states = self.nonlinearity(hidden_states)
203
+
204
+ hidden_states = self.dropout(hidden_states)
205
+ hidden_states = self.conv2(hidden_states)
206
+
207
+ if self.conv_shortcut is not None:
208
+ input_tensor = self.conv_shortcut(input_tensor)
209
+
210
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
211
+
212
+ return output_tensor
213
+
214
+
215
+ class Mish(torch.nn.Module):
216
+ def forward(self, hidden_states):
217
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
animatediff/models/unet.py ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import os
7
+ import json
8
+ import pdb
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.utils.checkpoint
13
+
14
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
15
+ from diffusers.modeling_utils import ModelMixin
16
+ from diffusers.utils import BaseOutput, logging
17
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
18
+ from .unet_blocks import (
19
+ CrossAttnDownBlock3D,
20
+ CrossAttnUpBlock3D,
21
+ DownBlock3D,
22
+ UNetMidBlock3DCrossAttn,
23
+ UpBlock3D,
24
+ get_down_block,
25
+ get_up_block,
26
+ )
27
+ from .resnet import InflatedConv3d, InflatedGroupNorm
28
+
29
+
30
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
31
+
32
+
33
+ @dataclass
34
+ class UNet3DConditionOutput(BaseOutput):
35
+ sample: torch.FloatTensor
36
+
37
+
38
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
39
+ _supports_gradient_checkpointing = True
40
+
41
+ @register_to_config
42
+ def __init__(
43
+ self,
44
+ sample_size: Optional[int] = None,
45
+ in_channels: int = 4,
46
+ out_channels: int = 4,
47
+ center_input_sample: bool = False,
48
+ flip_sin_to_cos: bool = True,
49
+ freq_shift: int = 0,
50
+ down_block_types: Tuple[str] = (
51
+ "CrossAttnDownBlock3D",
52
+ "CrossAttnDownBlock3D",
53
+ "CrossAttnDownBlock3D",
54
+ "DownBlock3D",
55
+ ),
56
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
57
+ up_block_types: Tuple[str] = (
58
+ "UpBlock3D",
59
+ "CrossAttnUpBlock3D",
60
+ "CrossAttnUpBlock3D",
61
+ "CrossAttnUpBlock3D"
62
+ ),
63
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
64
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
65
+ layers_per_block: int = 2,
66
+ downsample_padding: int = 1,
67
+ mid_block_scale_factor: float = 1,
68
+ act_fn: str = "silu",
69
+ norm_num_groups: int = 32,
70
+ norm_eps: float = 1e-5,
71
+ cross_attention_dim: int = 1280,
72
+ attention_head_dim: Union[int, Tuple[int]] = 8,
73
+ dual_cross_attention: bool = False,
74
+ use_linear_projection: bool = False,
75
+ class_embed_type: Optional[str] = None,
76
+ num_class_embeds: Optional[int] = None,
77
+ upcast_attention: bool = False,
78
+ resnet_time_scale_shift: str = "default",
79
+
80
+ use_inflated_groupnorm=False,
81
+
82
+ # Additional
83
+ use_motion_module = False,
84
+ motion_module_resolutions = ( 1,2,4,8 ),
85
+ motion_module_mid_block = False,
86
+ motion_module_decoder_only = False,
87
+ motion_module_type = None,
88
+ motion_module_kwargs = {},
89
+ unet_use_cross_frame_attention = None,
90
+ unet_use_temporal_attention = None,
91
+ ):
92
+ super().__init__()
93
+
94
+ self.sample_size = sample_size
95
+ time_embed_dim = block_out_channels[0] * 4
96
+
97
+ # input
98
+ self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
99
+
100
+ # time
101
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
102
+ timestep_input_dim = block_out_channels[0]
103
+
104
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
105
+
106
+ # class embedding
107
+ if class_embed_type is None and num_class_embeds is not None:
108
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
109
+ elif class_embed_type == "timestep":
110
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
111
+ elif class_embed_type == "identity":
112
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
113
+ else:
114
+ self.class_embedding = None
115
+
116
+ self.down_blocks = nn.ModuleList([])
117
+ self.mid_block = None
118
+ self.up_blocks = nn.ModuleList([])
119
+
120
+ if isinstance(only_cross_attention, bool):
121
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
122
+
123
+ if isinstance(attention_head_dim, int):
124
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
125
+
126
+ # down
127
+ output_channel = block_out_channels[0]
128
+ for i, down_block_type in enumerate(down_block_types):
129
+ res = 2 ** i
130
+ input_channel = output_channel
131
+ output_channel = block_out_channels[i]
132
+ is_final_block = i == len(block_out_channels) - 1
133
+
134
+ down_block = get_down_block(
135
+ down_block_type,
136
+ num_layers=layers_per_block,
137
+ in_channels=input_channel,
138
+ out_channels=output_channel,
139
+ temb_channels=time_embed_dim,
140
+ add_downsample=not is_final_block,
141
+ resnet_eps=norm_eps,
142
+ resnet_act_fn=act_fn,
143
+ resnet_groups=norm_num_groups,
144
+ cross_attention_dim=cross_attention_dim,
145
+ attn_num_head_channels=attention_head_dim[i],
146
+ downsample_padding=downsample_padding,
147
+ dual_cross_attention=dual_cross_attention,
148
+ use_linear_projection=use_linear_projection,
149
+ only_cross_attention=only_cross_attention[i],
150
+ upcast_attention=upcast_attention,
151
+ resnet_time_scale_shift=resnet_time_scale_shift,
152
+
153
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
154
+ unet_use_temporal_attention=unet_use_temporal_attention,
155
+ use_inflated_groupnorm=use_inflated_groupnorm,
156
+
157
+ use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only),
158
+ motion_module_type=motion_module_type,
159
+ motion_module_kwargs=motion_module_kwargs,
160
+ )
161
+ self.down_blocks.append(down_block)
162
+
163
+ # mid
164
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
165
+ self.mid_block = UNetMidBlock3DCrossAttn(
166
+ in_channels=block_out_channels[-1],
167
+ temb_channels=time_embed_dim,
168
+ resnet_eps=norm_eps,
169
+ resnet_act_fn=act_fn,
170
+ output_scale_factor=mid_block_scale_factor,
171
+ resnet_time_scale_shift=resnet_time_scale_shift,
172
+ cross_attention_dim=cross_attention_dim,
173
+ attn_num_head_channels=attention_head_dim[-1],
174
+ resnet_groups=norm_num_groups,
175
+ dual_cross_attention=dual_cross_attention,
176
+ use_linear_projection=use_linear_projection,
177
+ upcast_attention=upcast_attention,
178
+
179
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
180
+ unet_use_temporal_attention=unet_use_temporal_attention,
181
+ use_inflated_groupnorm=use_inflated_groupnorm,
182
+
183
+ use_motion_module=use_motion_module and motion_module_mid_block,
184
+ motion_module_type=motion_module_type,
185
+ motion_module_kwargs=motion_module_kwargs,
186
+ )
187
+ else:
188
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
189
+
190
+ # count how many layers upsample the videos
191
+ self.num_upsamplers = 0
192
+
193
+ # up
194
+ reversed_block_out_channels = list(reversed(block_out_channels))
195
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
196
+ only_cross_attention = list(reversed(only_cross_attention))
197
+ output_channel = reversed_block_out_channels[0]
198
+ for i, up_block_type in enumerate(up_block_types):
199
+ res = 2 ** (3 - i)
200
+ is_final_block = i == len(block_out_channels) - 1
201
+
202
+ prev_output_channel = output_channel
203
+ output_channel = reversed_block_out_channels[i]
204
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
205
+
206
+ # add upsample block for all BUT final layer
207
+ if not is_final_block:
208
+ add_upsample = True
209
+ self.num_upsamplers += 1
210
+ else:
211
+ add_upsample = False
212
+
213
+ up_block = get_up_block(
214
+ up_block_type,
215
+ num_layers=layers_per_block + 1,
216
+ in_channels=input_channel,
217
+ out_channels=output_channel,
218
+ prev_output_channel=prev_output_channel,
219
+ temb_channels=time_embed_dim,
220
+ add_upsample=add_upsample,
221
+ resnet_eps=norm_eps,
222
+ resnet_act_fn=act_fn,
223
+ resnet_groups=norm_num_groups,
224
+ cross_attention_dim=cross_attention_dim,
225
+ attn_num_head_channels=reversed_attention_head_dim[i],
226
+ dual_cross_attention=dual_cross_attention,
227
+ use_linear_projection=use_linear_projection,
228
+ only_cross_attention=only_cross_attention[i],
229
+ upcast_attention=upcast_attention,
230
+ resnet_time_scale_shift=resnet_time_scale_shift,
231
+
232
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
233
+ unet_use_temporal_attention=unet_use_temporal_attention,
234
+ use_inflated_groupnorm=use_inflated_groupnorm,
235
+
236
+ use_motion_module=use_motion_module and (res in motion_module_resolutions),
237
+ motion_module_type=motion_module_type,
238
+ motion_module_kwargs=motion_module_kwargs,
239
+ )
240
+ self.up_blocks.append(up_block)
241
+ prev_output_channel = output_channel
242
+
243
+ # out
244
+ if use_inflated_groupnorm:
245
+ self.conv_norm_out = InflatedGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
246
+ else:
247
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
248
+ self.conv_act = nn.SiLU()
249
+ self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
250
+
251
+ def set_attention_slice(self, slice_size):
252
+ r"""
253
+ Enable sliced attention computation.
254
+
255
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
256
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
257
+
258
+ Args:
259
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
260
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
261
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
262
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
263
+ must be a multiple of `slice_size`.
264
+ """
265
+ sliceable_head_dims = []
266
+
267
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
268
+ if hasattr(module, "set_attention_slice"):
269
+ sliceable_head_dims.append(module.sliceable_head_dim)
270
+
271
+ for child in module.children():
272
+ fn_recursive_retrieve_slicable_dims(child)
273
+
274
+ # retrieve number of attention layers
275
+ for module in self.children():
276
+ fn_recursive_retrieve_slicable_dims(module)
277
+
278
+ num_slicable_layers = len(sliceable_head_dims)
279
+
280
+ if slice_size == "auto":
281
+ # half the attention head size is usually a good trade-off between
282
+ # speed and memory
283
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
284
+ elif slice_size == "max":
285
+ # make smallest slice possible
286
+ slice_size = num_slicable_layers * [1]
287
+
288
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
289
+
290
+ if len(slice_size) != len(sliceable_head_dims):
291
+ raise ValueError(
292
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
293
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
294
+ )
295
+
296
+ for i in range(len(slice_size)):
297
+ size = slice_size[i]
298
+ dim = sliceable_head_dims[i]
299
+ if size is not None and size > dim:
300
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
301
+
302
+ # Recursively walk through all the children.
303
+ # Any children which exposes the set_attention_slice method
304
+ # gets the message
305
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
306
+ if hasattr(module, "set_attention_slice"):
307
+ module.set_attention_slice(slice_size.pop())
308
+
309
+ for child in module.children():
310
+ fn_recursive_set_attention_slice(child, slice_size)
311
+
312
+ reversed_slice_size = list(reversed(slice_size))
313
+ for module in self.children():
314
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
315
+
316
+ def _set_gradient_checkpointing(self, module, value=False):
317
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
318
+ module.gradient_checkpointing = value
319
+
320
+ def forward(
321
+ self,
322
+ sample: torch.FloatTensor,
323
+ timestep: Union[torch.Tensor, float, int],
324
+ encoder_hidden_states: torch.Tensor,
325
+ class_labels: Optional[torch.Tensor] = None,
326
+ attention_mask: Optional[torch.Tensor] = None,
327
+ return_dict: bool = True,
328
+ ) -> Union[UNet3DConditionOutput, Tuple]:
329
+ r"""
330
+ Args:
331
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
332
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
333
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
334
+ return_dict (`bool`, *optional*, defaults to `True`):
335
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
336
+
337
+ Returns:
338
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
339
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
340
+ returning a tuple, the first element is the sample tensor.
341
+ """
342
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
343
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
344
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
345
+ # on the fly if necessary.
346
+ default_overall_up_factor = 2**self.num_upsamplers
347
+
348
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
349
+ forward_upsample_size = False
350
+ upsample_size = None
351
+
352
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
353
+ logger.info("Forward upsample size to force interpolation output size.")
354
+ forward_upsample_size = True
355
+
356
+ # prepare attention_mask
357
+ if attention_mask is not None:
358
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
359
+ attention_mask = attention_mask.unsqueeze(1)
360
+
361
+ # center input if necessary
362
+ if self.config.center_input_sample:
363
+ sample = 2 * sample - 1.0
364
+
365
+ # time
366
+ timesteps = timestep
367
+ if not torch.is_tensor(timesteps):
368
+ # This would be a good case for the `match` statement (Python 3.10+)
369
+ is_mps = sample.device.type == "mps"
370
+ if isinstance(timestep, float):
371
+ dtype = torch.float32 if is_mps else torch.float64
372
+ else:
373
+ dtype = torch.int32 if is_mps else torch.int64
374
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
375
+ elif len(timesteps.shape) == 0:
376
+ timesteps = timesteps[None].to(sample.device)
377
+
378
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
379
+ timesteps = timesteps.expand(sample.shape[0])
380
+
381
+ t_emb = self.time_proj(timesteps)
382
+
383
+ # timesteps does not contain any weights and will always return f32 tensors
384
+ # but time_embedding might actually be running in fp16. so we need to cast here.
385
+ # there might be better ways to encapsulate this.
386
+ t_emb = t_emb.to(dtype=self.dtype)
387
+ emb = self.time_embedding(t_emb)
388
+
389
+ if self.class_embedding is not None:
390
+ if class_labels is None:
391
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
392
+
393
+ if self.config.class_embed_type == "timestep":
394
+ class_labels = self.time_proj(class_labels)
395
+
396
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
397
+ emb = emb + class_emb
398
+
399
+ # pre-process
400
+ sample = self.conv_in(sample)
401
+
402
+ # down
403
+ down_block_res_samples = (sample,)
404
+ for downsample_block in self.down_blocks:
405
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
406
+ sample, res_samples = downsample_block(
407
+ hidden_states=sample,
408
+ temb=emb,
409
+ encoder_hidden_states=encoder_hidden_states,
410
+ attention_mask=attention_mask,
411
+ )
412
+ else:
413
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states)
414
+
415
+ down_block_res_samples += res_samples
416
+
417
+ # mid
418
+ sample = self.mid_block(
419
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
420
+ )
421
+
422
+ # up
423
+ for i, upsample_block in enumerate(self.up_blocks):
424
+ is_final_block = i == len(self.up_blocks) - 1
425
+
426
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
427
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
428
+
429
+ # if we have not reached the final block and need to forward the
430
+ # upsample size, we do it here
431
+ if not is_final_block and forward_upsample_size:
432
+ upsample_size = down_block_res_samples[-1].shape[2:]
433
+
434
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
435
+ sample = upsample_block(
436
+ hidden_states=sample,
437
+ temb=emb,
438
+ res_hidden_states_tuple=res_samples,
439
+ encoder_hidden_states=encoder_hidden_states,
440
+ upsample_size=upsample_size,
441
+ attention_mask=attention_mask,
442
+ )
443
+ else:
444
+ sample = upsample_block(
445
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states,
446
+ )
447
+
448
+ # post-process
449
+ sample = self.conv_norm_out(sample)
450
+ sample = self.conv_act(sample)
451
+ sample = self.conv_out(sample)
452
+
453
+ if not return_dict:
454
+ return (sample,)
455
+
456
+ return UNet3DConditionOutput(sample=sample)
457
+
458
+ @classmethod
459
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
460
+ if subfolder is not None:
461
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
462
+ print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
463
+
464
+ config_file = os.path.join(pretrained_model_path, 'config.json')
465
+ if not os.path.isfile(config_file):
466
+ raise RuntimeError(f"{config_file} does not exist")
467
+ with open(config_file, "r") as f:
468
+ config = json.load(f)
469
+ config["_class_name"] = cls.__name__
470
+ config["down_block_types"] = [
471
+ "CrossAttnDownBlock3D",
472
+ "CrossAttnDownBlock3D",
473
+ "CrossAttnDownBlock3D",
474
+ "DownBlock3D"
475
+ ]
476
+ config["up_block_types"] = [
477
+ "UpBlock3D",
478
+ "CrossAttnUpBlock3D",
479
+ "CrossAttnUpBlock3D",
480
+ "CrossAttnUpBlock3D"
481
+ ]
482
+
483
+ from diffusers.utils import WEIGHTS_NAME
484
+ model = cls.from_config(config, **unet_additional_kwargs)
485
+ model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
486
+ if not os.path.isfile(model_file):
487
+ raise RuntimeError(f"{model_file} does not exist")
488
+ state_dict = torch.load(model_file, map_location="cpu")
489
+
490
+ m, u = model.load_state_dict(state_dict, strict=False)
491
+ print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
492
+ # print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n")
493
+
494
+ params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
495
+ print(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
496
+
497
+ return model
animatediff/models/unet_blocks.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from .attention import Transformer3DModel
7
+ from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
+ from .motion_module import get_motion_module
9
+
10
+ import pdb
11
+
12
+ def get_down_block(
13
+ down_block_type,
14
+ num_layers,
15
+ in_channels,
16
+ out_channels,
17
+ temb_channels,
18
+ add_downsample,
19
+ resnet_eps,
20
+ resnet_act_fn,
21
+ attn_num_head_channels,
22
+ resnet_groups=None,
23
+ cross_attention_dim=None,
24
+ downsample_padding=None,
25
+ dual_cross_attention=False,
26
+ use_linear_projection=False,
27
+ only_cross_attention=False,
28
+ upcast_attention=False,
29
+ resnet_time_scale_shift="default",
30
+
31
+ unet_use_cross_frame_attention=None,
32
+ unet_use_temporal_attention=None,
33
+ use_inflated_groupnorm=None,
34
+
35
+ use_motion_module=None,
36
+
37
+ motion_module_type=None,
38
+ motion_module_kwargs=None,
39
+ ):
40
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
41
+ if down_block_type == "DownBlock3D":
42
+ return DownBlock3D(
43
+ num_layers=num_layers,
44
+ in_channels=in_channels,
45
+ out_channels=out_channels,
46
+ temb_channels=temb_channels,
47
+ add_downsample=add_downsample,
48
+ resnet_eps=resnet_eps,
49
+ resnet_act_fn=resnet_act_fn,
50
+ resnet_groups=resnet_groups,
51
+ downsample_padding=downsample_padding,
52
+ resnet_time_scale_shift=resnet_time_scale_shift,
53
+
54
+ use_inflated_groupnorm=use_inflated_groupnorm,
55
+
56
+ use_motion_module=use_motion_module,
57
+ motion_module_type=motion_module_type,
58
+ motion_module_kwargs=motion_module_kwargs,
59
+ )
60
+ elif down_block_type == "CrossAttnDownBlock3D":
61
+ if cross_attention_dim is None:
62
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
63
+ return CrossAttnDownBlock3D(
64
+ num_layers=num_layers,
65
+ in_channels=in_channels,
66
+ out_channels=out_channels,
67
+ temb_channels=temb_channels,
68
+ add_downsample=add_downsample,
69
+ resnet_eps=resnet_eps,
70
+ resnet_act_fn=resnet_act_fn,
71
+ resnet_groups=resnet_groups,
72
+ downsample_padding=downsample_padding,
73
+ cross_attention_dim=cross_attention_dim,
74
+ attn_num_head_channels=attn_num_head_channels,
75
+ dual_cross_attention=dual_cross_attention,
76
+ use_linear_projection=use_linear_projection,
77
+ only_cross_attention=only_cross_attention,
78
+ upcast_attention=upcast_attention,
79
+ resnet_time_scale_shift=resnet_time_scale_shift,
80
+
81
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
82
+ unet_use_temporal_attention=unet_use_temporal_attention,
83
+ use_inflated_groupnorm=use_inflated_groupnorm,
84
+
85
+ use_motion_module=use_motion_module,
86
+ motion_module_type=motion_module_type,
87
+ motion_module_kwargs=motion_module_kwargs,
88
+ )
89
+ raise ValueError(f"{down_block_type} does not exist.")
90
+
91
+
92
+ def get_up_block(
93
+ up_block_type,
94
+ num_layers,
95
+ in_channels,
96
+ out_channels,
97
+ prev_output_channel,
98
+ temb_channels,
99
+ add_upsample,
100
+ resnet_eps,
101
+ resnet_act_fn,
102
+ attn_num_head_channels,
103
+ resnet_groups=None,
104
+ cross_attention_dim=None,
105
+ dual_cross_attention=False,
106
+ use_linear_projection=False,
107
+ only_cross_attention=False,
108
+ upcast_attention=False,
109
+ resnet_time_scale_shift="default",
110
+
111
+ unet_use_cross_frame_attention=None,
112
+ unet_use_temporal_attention=None,
113
+ use_inflated_groupnorm=None,
114
+
115
+ use_motion_module=None,
116
+ motion_module_type=None,
117
+ motion_module_kwargs=None,
118
+ ):
119
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
120
+ if up_block_type == "UpBlock3D":
121
+ return UpBlock3D(
122
+ num_layers=num_layers,
123
+ in_channels=in_channels,
124
+ out_channels=out_channels,
125
+ prev_output_channel=prev_output_channel,
126
+ temb_channels=temb_channels,
127
+ add_upsample=add_upsample,
128
+ resnet_eps=resnet_eps,
129
+ resnet_act_fn=resnet_act_fn,
130
+ resnet_groups=resnet_groups,
131
+ resnet_time_scale_shift=resnet_time_scale_shift,
132
+
133
+ use_inflated_groupnorm=use_inflated_groupnorm,
134
+
135
+ use_motion_module=use_motion_module,
136
+ motion_module_type=motion_module_type,
137
+ motion_module_kwargs=motion_module_kwargs,
138
+ )
139
+ elif up_block_type == "CrossAttnUpBlock3D":
140
+ if cross_attention_dim is None:
141
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
142
+ return CrossAttnUpBlock3D(
143
+ num_layers=num_layers,
144
+ in_channels=in_channels,
145
+ out_channels=out_channels,
146
+ prev_output_channel=prev_output_channel,
147
+ temb_channels=temb_channels,
148
+ add_upsample=add_upsample,
149
+ resnet_eps=resnet_eps,
150
+ resnet_act_fn=resnet_act_fn,
151
+ resnet_groups=resnet_groups,
152
+ cross_attention_dim=cross_attention_dim,
153
+ attn_num_head_channels=attn_num_head_channels,
154
+ dual_cross_attention=dual_cross_attention,
155
+ use_linear_projection=use_linear_projection,
156
+ only_cross_attention=only_cross_attention,
157
+ upcast_attention=upcast_attention,
158
+ resnet_time_scale_shift=resnet_time_scale_shift,
159
+
160
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
161
+ unet_use_temporal_attention=unet_use_temporal_attention,
162
+ use_inflated_groupnorm=use_inflated_groupnorm,
163
+
164
+ use_motion_module=use_motion_module,
165
+ motion_module_type=motion_module_type,
166
+ motion_module_kwargs=motion_module_kwargs,
167
+ )
168
+ raise ValueError(f"{up_block_type} does not exist.")
169
+
170
+
171
+ class UNetMidBlock3DCrossAttn(nn.Module):
172
+ def __init__(
173
+ self,
174
+ in_channels: int,
175
+ temb_channels: int,
176
+ dropout: float = 0.0,
177
+ num_layers: int = 1,
178
+ resnet_eps: float = 1e-6,
179
+ resnet_time_scale_shift: str = "default",
180
+ resnet_act_fn: str = "swish",
181
+ resnet_groups: int = 32,
182
+ resnet_pre_norm: bool = True,
183
+ attn_num_head_channels=1,
184
+ output_scale_factor=1.0,
185
+ cross_attention_dim=1280,
186
+ dual_cross_attention=False,
187
+ use_linear_projection=False,
188
+ upcast_attention=False,
189
+
190
+ unet_use_cross_frame_attention=None,
191
+ unet_use_temporal_attention=None,
192
+ use_inflated_groupnorm=None,
193
+
194
+ use_motion_module=None,
195
+
196
+ motion_module_type=None,
197
+ motion_module_kwargs=None,
198
+ ):
199
+ super().__init__()
200
+
201
+ self.has_cross_attention = True
202
+ self.attn_num_head_channels = attn_num_head_channels
203
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
204
+
205
+ # there is always at least one resnet
206
+ resnets = [
207
+ ResnetBlock3D(
208
+ in_channels=in_channels,
209
+ out_channels=in_channels,
210
+ temb_channels=temb_channels,
211
+ eps=resnet_eps,
212
+ groups=resnet_groups,
213
+ dropout=dropout,
214
+ time_embedding_norm=resnet_time_scale_shift,
215
+ non_linearity=resnet_act_fn,
216
+ output_scale_factor=output_scale_factor,
217
+ pre_norm=resnet_pre_norm,
218
+
219
+ use_inflated_groupnorm=use_inflated_groupnorm,
220
+ )
221
+ ]
222
+ attentions = []
223
+ motion_modules = []
224
+
225
+ for _ in range(num_layers):
226
+ if dual_cross_attention:
227
+ raise NotImplementedError
228
+ attentions.append(
229
+ Transformer3DModel(
230
+ attn_num_head_channels,
231
+ in_channels // attn_num_head_channels,
232
+ in_channels=in_channels,
233
+ num_layers=1,
234
+ cross_attention_dim=cross_attention_dim,
235
+ norm_num_groups=resnet_groups,
236
+ use_linear_projection=use_linear_projection,
237
+ upcast_attention=upcast_attention,
238
+
239
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
240
+ unet_use_temporal_attention=unet_use_temporal_attention,
241
+ )
242
+ )
243
+ motion_modules.append(
244
+ get_motion_module(
245
+ in_channels=in_channels,
246
+ motion_module_type=motion_module_type,
247
+ motion_module_kwargs=motion_module_kwargs,
248
+ ) if use_motion_module else None
249
+ )
250
+ resnets.append(
251
+ ResnetBlock3D(
252
+ in_channels=in_channels,
253
+ out_channels=in_channels,
254
+ temb_channels=temb_channels,
255
+ eps=resnet_eps,
256
+ groups=resnet_groups,
257
+ dropout=dropout,
258
+ time_embedding_norm=resnet_time_scale_shift,
259
+ non_linearity=resnet_act_fn,
260
+ output_scale_factor=output_scale_factor,
261
+ pre_norm=resnet_pre_norm,
262
+
263
+ use_inflated_groupnorm=use_inflated_groupnorm,
264
+ )
265
+ )
266
+
267
+ self.attentions = nn.ModuleList(attentions)
268
+ self.resnets = nn.ModuleList(resnets)
269
+ self.motion_modules = nn.ModuleList(motion_modules)
270
+
271
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
272
+ hidden_states = self.resnets[0](hidden_states, temb)
273
+ for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules):
274
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
275
+ hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
276
+ hidden_states = resnet(hidden_states, temb)
277
+
278
+ return hidden_states
279
+
280
+
281
+ class CrossAttnDownBlock3D(nn.Module):
282
+ def __init__(
283
+ self,
284
+ in_channels: int,
285
+ out_channels: int,
286
+ temb_channels: int,
287
+ dropout: float = 0.0,
288
+ num_layers: int = 1,
289
+ resnet_eps: float = 1e-6,
290
+ resnet_time_scale_shift: str = "default",
291
+ resnet_act_fn: str = "swish",
292
+ resnet_groups: int = 32,
293
+ resnet_pre_norm: bool = True,
294
+ attn_num_head_channels=1,
295
+ cross_attention_dim=1280,
296
+ output_scale_factor=1.0,
297
+ downsample_padding=1,
298
+ add_downsample=True,
299
+ dual_cross_attention=False,
300
+ use_linear_projection=False,
301
+ only_cross_attention=False,
302
+ upcast_attention=False,
303
+
304
+ unet_use_cross_frame_attention=None,
305
+ unet_use_temporal_attention=None,
306
+ use_inflated_groupnorm=None,
307
+
308
+ use_motion_module=None,
309
+
310
+ motion_module_type=None,
311
+ motion_module_kwargs=None,
312
+ ):
313
+ super().__init__()
314
+ resnets = []
315
+ attentions = []
316
+ motion_modules = []
317
+
318
+ self.has_cross_attention = True
319
+ self.attn_num_head_channels = attn_num_head_channels
320
+
321
+ for i in range(num_layers):
322
+ in_channels = in_channels if i == 0 else out_channels
323
+ resnets.append(
324
+ ResnetBlock3D(
325
+ in_channels=in_channels,
326
+ out_channels=out_channels,
327
+ temb_channels=temb_channels,
328
+ eps=resnet_eps,
329
+ groups=resnet_groups,
330
+ dropout=dropout,
331
+ time_embedding_norm=resnet_time_scale_shift,
332
+ non_linearity=resnet_act_fn,
333
+ output_scale_factor=output_scale_factor,
334
+ pre_norm=resnet_pre_norm,
335
+
336
+ use_inflated_groupnorm=use_inflated_groupnorm,
337
+ )
338
+ )
339
+ if dual_cross_attention:
340
+ raise NotImplementedError
341
+ attentions.append(
342
+ Transformer3DModel(
343
+ attn_num_head_channels,
344
+ out_channels // attn_num_head_channels,
345
+ in_channels=out_channels,
346
+ num_layers=1,
347
+ cross_attention_dim=cross_attention_dim,
348
+ norm_num_groups=resnet_groups,
349
+ use_linear_projection=use_linear_projection,
350
+ only_cross_attention=only_cross_attention,
351
+ upcast_attention=upcast_attention,
352
+
353
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
354
+ unet_use_temporal_attention=unet_use_temporal_attention,
355
+ )
356
+ )
357
+ motion_modules.append(
358
+ get_motion_module(
359
+ in_channels=out_channels,
360
+ motion_module_type=motion_module_type,
361
+ motion_module_kwargs=motion_module_kwargs,
362
+ ) if use_motion_module else None
363
+ )
364
+
365
+ self.attentions = nn.ModuleList(attentions)
366
+ self.resnets = nn.ModuleList(resnets)
367
+ self.motion_modules = nn.ModuleList(motion_modules)
368
+
369
+ if add_downsample:
370
+ self.downsamplers = nn.ModuleList(
371
+ [
372
+ Downsample3D(
373
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
374
+ )
375
+ ]
376
+ )
377
+ else:
378
+ self.downsamplers = None
379
+
380
+ self.gradient_checkpointing = False
381
+
382
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
383
+ output_states = ()
384
+
385
+ for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules):
386
+ if self.training and self.gradient_checkpointing:
387
+
388
+ def create_custom_forward(module, return_dict=None):
389
+ def custom_forward(*inputs):
390
+ if return_dict is not None:
391
+ return module(*inputs, return_dict=return_dict)
392
+ else:
393
+ return module(*inputs)
394
+
395
+ return custom_forward
396
+
397
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
398
+ hidden_states = torch.utils.checkpoint.checkpoint(
399
+ create_custom_forward(attn, return_dict=False),
400
+ hidden_states,
401
+ encoder_hidden_states,
402
+ )[0]
403
+ if motion_module is not None:
404
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
405
+
406
+ else:
407
+ hidden_states = resnet(hidden_states, temb)
408
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
409
+
410
+ # add motion module
411
+ hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
412
+
413
+ output_states += (hidden_states,)
414
+
415
+ if self.downsamplers is not None:
416
+ for downsampler in self.downsamplers:
417
+ hidden_states = downsampler(hidden_states)
418
+
419
+ output_states += (hidden_states,)
420
+
421
+ return hidden_states, output_states
422
+
423
+
424
+ class DownBlock3D(nn.Module):
425
+ def __init__(
426
+ self,
427
+ in_channels: int,
428
+ out_channels: int,
429
+ temb_channels: int,
430
+ dropout: float = 0.0,
431
+ num_layers: int = 1,
432
+ resnet_eps: float = 1e-6,
433
+ resnet_time_scale_shift: str = "default",
434
+ resnet_act_fn: str = "swish",
435
+ resnet_groups: int = 32,
436
+ resnet_pre_norm: bool = True,
437
+ output_scale_factor=1.0,
438
+ add_downsample=True,
439
+ downsample_padding=1,
440
+
441
+ use_inflated_groupnorm=None,
442
+
443
+ use_motion_module=None,
444
+ motion_module_type=None,
445
+ motion_module_kwargs=None,
446
+ ):
447
+ super().__init__()
448
+ resnets = []
449
+ motion_modules = []
450
+
451
+ for i in range(num_layers):
452
+ in_channels = in_channels if i == 0 else out_channels
453
+ resnets.append(
454
+ ResnetBlock3D(
455
+ in_channels=in_channels,
456
+ out_channels=out_channels,
457
+ temb_channels=temb_channels,
458
+ eps=resnet_eps,
459
+ groups=resnet_groups,
460
+ dropout=dropout,
461
+ time_embedding_norm=resnet_time_scale_shift,
462
+ non_linearity=resnet_act_fn,
463
+ output_scale_factor=output_scale_factor,
464
+ pre_norm=resnet_pre_norm,
465
+
466
+ use_inflated_groupnorm=use_inflated_groupnorm,
467
+ )
468
+ )
469
+ motion_modules.append(
470
+ get_motion_module(
471
+ in_channels=out_channels,
472
+ motion_module_type=motion_module_type,
473
+ motion_module_kwargs=motion_module_kwargs,
474
+ ) if use_motion_module else None
475
+ )
476
+
477
+ self.resnets = nn.ModuleList(resnets)
478
+ self.motion_modules = nn.ModuleList(motion_modules)
479
+
480
+ if add_downsample:
481
+ self.downsamplers = nn.ModuleList(
482
+ [
483
+ Downsample3D(
484
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
485
+ )
486
+ ]
487
+ )
488
+ else:
489
+ self.downsamplers = None
490
+
491
+ self.gradient_checkpointing = False
492
+
493
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
494
+ output_states = ()
495
+
496
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
497
+ if self.training and self.gradient_checkpointing:
498
+ def create_custom_forward(module):
499
+ def custom_forward(*inputs):
500
+ return module(*inputs)
501
+
502
+ return custom_forward
503
+
504
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
505
+ if motion_module is not None:
506
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
507
+ else:
508
+ hidden_states = resnet(hidden_states, temb)
509
+
510
+ # add motion module
511
+ hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
512
+
513
+ output_states += (hidden_states,)
514
+
515
+ if self.downsamplers is not None:
516
+ for downsampler in self.downsamplers:
517
+ hidden_states = downsampler(hidden_states)
518
+
519
+ output_states += (hidden_states,)
520
+
521
+ return hidden_states, output_states
522
+
523
+
524
+ class CrossAttnUpBlock3D(nn.Module):
525
+ def __init__(
526
+ self,
527
+ in_channels: int,
528
+ out_channels: int,
529
+ prev_output_channel: int,
530
+ temb_channels: int,
531
+ dropout: float = 0.0,
532
+ num_layers: int = 1,
533
+ resnet_eps: float = 1e-6,
534
+ resnet_time_scale_shift: str = "default",
535
+ resnet_act_fn: str = "swish",
536
+ resnet_groups: int = 32,
537
+ resnet_pre_norm: bool = True,
538
+ attn_num_head_channels=1,
539
+ cross_attention_dim=1280,
540
+ output_scale_factor=1.0,
541
+ add_upsample=True,
542
+ dual_cross_attention=False,
543
+ use_linear_projection=False,
544
+ only_cross_attention=False,
545
+ upcast_attention=False,
546
+
547
+ unet_use_cross_frame_attention=None,
548
+ unet_use_temporal_attention=None,
549
+ use_inflated_groupnorm=None,
550
+
551
+ use_motion_module=None,
552
+
553
+ motion_module_type=None,
554
+ motion_module_kwargs=None,
555
+ ):
556
+ super().__init__()
557
+ resnets = []
558
+ attentions = []
559
+ motion_modules = []
560
+
561
+ self.has_cross_attention = True
562
+ self.attn_num_head_channels = attn_num_head_channels
563
+
564
+ for i in range(num_layers):
565
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
566
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
567
+
568
+ resnets.append(
569
+ ResnetBlock3D(
570
+ in_channels=resnet_in_channels + res_skip_channels,
571
+ out_channels=out_channels,
572
+ temb_channels=temb_channels,
573
+ eps=resnet_eps,
574
+ groups=resnet_groups,
575
+ dropout=dropout,
576
+ time_embedding_norm=resnet_time_scale_shift,
577
+ non_linearity=resnet_act_fn,
578
+ output_scale_factor=output_scale_factor,
579
+ pre_norm=resnet_pre_norm,
580
+
581
+ use_inflated_groupnorm=use_inflated_groupnorm,
582
+ )
583
+ )
584
+ if dual_cross_attention:
585
+ raise NotImplementedError
586
+ attentions.append(
587
+ Transformer3DModel(
588
+ attn_num_head_channels,
589
+ out_channels // attn_num_head_channels,
590
+ in_channels=out_channels,
591
+ num_layers=1,
592
+ cross_attention_dim=cross_attention_dim,
593
+ norm_num_groups=resnet_groups,
594
+ use_linear_projection=use_linear_projection,
595
+ only_cross_attention=only_cross_attention,
596
+ upcast_attention=upcast_attention,
597
+
598
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
599
+ unet_use_temporal_attention=unet_use_temporal_attention,
600
+ )
601
+ )
602
+ motion_modules.append(
603
+ get_motion_module(
604
+ in_channels=out_channels,
605
+ motion_module_type=motion_module_type,
606
+ motion_module_kwargs=motion_module_kwargs,
607
+ ) if use_motion_module else None
608
+ )
609
+
610
+ self.attentions = nn.ModuleList(attentions)
611
+ self.resnets = nn.ModuleList(resnets)
612
+ self.motion_modules = nn.ModuleList(motion_modules)
613
+
614
+ if add_upsample:
615
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
616
+ else:
617
+ self.upsamplers = None
618
+
619
+ self.gradient_checkpointing = False
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states,
624
+ res_hidden_states_tuple,
625
+ temb=None,
626
+ encoder_hidden_states=None,
627
+ upsample_size=None,
628
+ attention_mask=None,
629
+ ):
630
+ for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules):
631
+ # pop res hidden states
632
+ res_hidden_states = res_hidden_states_tuple[-1]
633
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
634
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
635
+
636
+ if self.training and self.gradient_checkpointing:
637
+
638
+ def create_custom_forward(module, return_dict=None):
639
+ def custom_forward(*inputs):
640
+ if return_dict is not None:
641
+ return module(*inputs, return_dict=return_dict)
642
+ else:
643
+ return module(*inputs)
644
+
645
+ return custom_forward
646
+
647
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
648
+ hidden_states = torch.utils.checkpoint.checkpoint(
649
+ create_custom_forward(attn, return_dict=False),
650
+ hidden_states,
651
+ encoder_hidden_states,
652
+ )[0]
653
+ if motion_module is not None:
654
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
655
+
656
+ else:
657
+ hidden_states = resnet(hidden_states, temb)
658
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
659
+
660
+ # add motion module
661
+ hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
662
+
663
+ if self.upsamplers is not None:
664
+ for upsampler in self.upsamplers:
665
+ hidden_states = upsampler(hidden_states, upsample_size)
666
+
667
+ return hidden_states
668
+
669
+
670
+ class UpBlock3D(nn.Module):
671
+ def __init__(
672
+ self,
673
+ in_channels: int,
674
+ prev_output_channel: int,
675
+ out_channels: int,
676
+ temb_channels: int,
677
+ dropout: float = 0.0,
678
+ num_layers: int = 1,
679
+ resnet_eps: float = 1e-6,
680
+ resnet_time_scale_shift: str = "default",
681
+ resnet_act_fn: str = "swish",
682
+ resnet_groups: int = 32,
683
+ resnet_pre_norm: bool = True,
684
+ output_scale_factor=1.0,
685
+ add_upsample=True,
686
+
687
+ use_inflated_groupnorm=None,
688
+
689
+ use_motion_module=None,
690
+ motion_module_type=None,
691
+ motion_module_kwargs=None,
692
+ ):
693
+ super().__init__()
694
+ resnets = []
695
+ motion_modules = []
696
+
697
+ for i in range(num_layers):
698
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
699
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
700
+
701
+ resnets.append(
702
+ ResnetBlock3D(
703
+ in_channels=resnet_in_channels + res_skip_channels,
704
+ out_channels=out_channels,
705
+ temb_channels=temb_channels,
706
+ eps=resnet_eps,
707
+ groups=resnet_groups,
708
+ dropout=dropout,
709
+ time_embedding_norm=resnet_time_scale_shift,
710
+ non_linearity=resnet_act_fn,
711
+ output_scale_factor=output_scale_factor,
712
+ pre_norm=resnet_pre_norm,
713
+
714
+ use_inflated_groupnorm=use_inflated_groupnorm,
715
+ )
716
+ )
717
+ motion_modules.append(
718
+ get_motion_module(
719
+ in_channels=out_channels,
720
+ motion_module_type=motion_module_type,
721
+ motion_module_kwargs=motion_module_kwargs,
722
+ ) if use_motion_module else None
723
+ )
724
+
725
+ self.resnets = nn.ModuleList(resnets)
726
+ self.motion_modules = nn.ModuleList(motion_modules)
727
+
728
+ if add_upsample:
729
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
730
+ else:
731
+ self.upsamplers = None
732
+
733
+ self.gradient_checkpointing = False
734
+
735
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,):
736
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
737
+ # pop res hidden states
738
+ res_hidden_states = res_hidden_states_tuple[-1]
739
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
740
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
741
+
742
+ if self.training and self.gradient_checkpointing:
743
+ def create_custom_forward(module):
744
+ def custom_forward(*inputs):
745
+ return module(*inputs)
746
+
747
+ return custom_forward
748
+
749
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
750
+ if motion_module is not None:
751
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
752
+ else:
753
+ hidden_states = resnet(hidden_states, temb)
754
+ hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
755
+
756
+ if self.upsamplers is not None:
757
+ for upsampler in self.upsamplers:
758
+ hidden_states = upsampler(hidden_states, upsample_size)
759
+
760
+ return hidden_states
animatediff/pipelines/pipeline_animation.py ADDED
@@ -0,0 +1,656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
2
+
3
+ import inspect
4
+ from typing import Callable, List, Optional, Union
5
+ from dataclasses import dataclass
6
+
7
+ import numpy as np
8
+ import torch
9
+ from tqdm import tqdm
10
+
11
+ from diffusers.utils import is_accelerate_available
12
+ from packaging import version
13
+ from transformers import CLIPTextModel, CLIPTokenizer
14
+
15
+ from diffusers.configuration_utils import FrozenDict
16
+ from diffusers.models import AutoencoderKL
17
+ from diffusers.pipeline_utils import DiffusionPipeline
18
+ from diffusers.schedulers import (
19
+ DDIMScheduler,
20
+ DPMSolverMultistepScheduler,
21
+ EulerAncestralDiscreteScheduler,
22
+ EulerDiscreteScheduler,
23
+ LMSDiscreteScheduler,
24
+ PNDMScheduler,
25
+ )
26
+ from diffusers.utils import deprecate, logging, BaseOutput
27
+
28
+ from einops import rearrange
29
+
30
+ from ..models.unet import UNet3DConditionModel
31
+
32
+ from ..utils.freeinit_utils import (
33
+ get_freq_filter,
34
+ freq_mix_3d,
35
+ )
36
+ import os
37
+
38
+ from ..utils.util import save_videos_grid
39
+
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+ @dataclass
46
+ class AnimationPipelineOutput(BaseOutput):
47
+ videos: Union[torch.Tensor, np.ndarray]
48
+
49
+ @dataclass
50
+ class AnimationFreeInitPipelineOutput(BaseOutput):
51
+ videos: Union[torch.Tensor, np.ndarray]
52
+ orig_videos: Union[torch.Tensor, np.ndarray]
53
+
54
+
55
+ class AnimationPipeline(DiffusionPipeline):
56
+ _optional_components = []
57
+
58
+ def __init__(
59
+ self,
60
+ vae: AutoencoderKL,
61
+ text_encoder: CLIPTextModel,
62
+ tokenizer: CLIPTokenizer,
63
+ unet: UNet3DConditionModel,
64
+ scheduler: Union[
65
+ DDIMScheduler,
66
+ PNDMScheduler,
67
+ LMSDiscreteScheduler,
68
+ EulerDiscreteScheduler,
69
+ EulerAncestralDiscreteScheduler,
70
+ DPMSolverMultistepScheduler,
71
+ ],
72
+ ):
73
+ super().__init__()
74
+
75
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
76
+ deprecation_message = (
77
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
78
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
79
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
80
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
81
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
82
+ " file"
83
+ )
84
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
85
+ new_config = dict(scheduler.config)
86
+ new_config["steps_offset"] = 1
87
+ scheduler._internal_dict = FrozenDict(new_config)
88
+
89
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
90
+ deprecation_message = (
91
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
92
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
93
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
94
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
95
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
96
+ )
97
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
98
+ new_config = dict(scheduler.config)
99
+ new_config["clip_sample"] = False
100
+ scheduler._internal_dict = FrozenDict(new_config)
101
+
102
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
103
+ version.parse(unet.config._diffusers_version).base_version
104
+ ) < version.parse("0.9.0.dev0")
105
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
106
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
107
+ deprecation_message = (
108
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
109
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
110
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
111
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
112
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
113
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
114
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
115
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
116
+ " the `unet/config.json` file"
117
+ )
118
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
119
+ new_config = dict(unet.config)
120
+ new_config["sample_size"] = 64
121
+ unet._internal_dict = FrozenDict(new_config)
122
+
123
+ self.register_modules(
124
+ vae=vae,
125
+ text_encoder=text_encoder,
126
+ tokenizer=tokenizer,
127
+ unet=unet,
128
+ scheduler=scheduler,
129
+ )
130
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
131
+
132
+ def enable_vae_slicing(self):
133
+ self.vae.enable_slicing()
134
+
135
+ def disable_vae_slicing(self):
136
+ self.vae.disable_slicing()
137
+
138
+ def enable_sequential_cpu_offload(self, gpu_id=0):
139
+ if is_accelerate_available():
140
+ from accelerate import cpu_offload
141
+ else:
142
+ raise ImportError("Please install accelerate via `pip install accelerate`")
143
+
144
+ device = torch.device(f"cuda:{gpu_id}")
145
+
146
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
147
+ if cpu_offloaded_model is not None:
148
+ cpu_offload(cpu_offloaded_model, device)
149
+
150
+
151
+ @property
152
+ def _execution_device(self):
153
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
154
+ return self.device
155
+ for module in self.unet.modules():
156
+ if (
157
+ hasattr(module, "_hf_hook")
158
+ and hasattr(module._hf_hook, "execution_device")
159
+ and module._hf_hook.execution_device is not None
160
+ ):
161
+ return torch.device(module._hf_hook.execution_device)
162
+ return self.device
163
+
164
+ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
165
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
166
+
167
+ text_inputs = self.tokenizer(
168
+ prompt,
169
+ padding="max_length",
170
+ max_length=self.tokenizer.model_max_length,
171
+ truncation=True,
172
+ return_tensors="pt",
173
+ )
174
+ text_input_ids = text_inputs.input_ids
175
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
176
+
177
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
178
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
179
+ logger.warning(
180
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
181
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
182
+ )
183
+
184
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
185
+ attention_mask = text_inputs.attention_mask.to(device)
186
+ else:
187
+ attention_mask = None
188
+
189
+ text_embeddings = self.text_encoder(
190
+ text_input_ids.to(device),
191
+ attention_mask=attention_mask,
192
+ )
193
+ text_embeddings = text_embeddings[0]
194
+
195
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
196
+ bs_embed, seq_len, _ = text_embeddings.shape
197
+ text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
198
+ text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
199
+
200
+ # get unconditional embeddings for classifier free guidance
201
+ if do_classifier_free_guidance:
202
+ uncond_tokens: List[str]
203
+ if negative_prompt is None:
204
+ uncond_tokens = [""] * batch_size
205
+ elif type(prompt) is not type(negative_prompt):
206
+ raise TypeError(
207
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
208
+ f" {type(prompt)}."
209
+ )
210
+ elif isinstance(negative_prompt, str):
211
+ uncond_tokens = [negative_prompt]
212
+ elif batch_size != len(negative_prompt):
213
+ raise ValueError(
214
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
215
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
216
+ " the batch size of `prompt`."
217
+ )
218
+ else:
219
+ uncond_tokens = negative_prompt
220
+
221
+ max_length = text_input_ids.shape[-1]
222
+ uncond_input = self.tokenizer(
223
+ uncond_tokens,
224
+ padding="max_length",
225
+ max_length=max_length,
226
+ truncation=True,
227
+ return_tensors="pt",
228
+ )
229
+
230
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
231
+ attention_mask = uncond_input.attention_mask.to(device)
232
+ else:
233
+ attention_mask = None
234
+
235
+ uncond_embeddings = self.text_encoder(
236
+ uncond_input.input_ids.to(device),
237
+ attention_mask=attention_mask,
238
+ )
239
+ uncond_embeddings = uncond_embeddings[0]
240
+
241
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
242
+ seq_len = uncond_embeddings.shape[1]
243
+ uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
244
+ uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
245
+
246
+ # For classifier free guidance, we need to do two forward passes.
247
+ # Here we concatenate the unconditional and text embeddings into a single batch
248
+ # to avoid doing two forward passes
249
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
250
+
251
+ return text_embeddings
252
+
253
+ def decode_latents(self, latents):
254
+ video_length = latents.shape[2]
255
+ latents = 1 / 0.18215 * latents
256
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
257
+ # video = self.vae.decode(latents).sample
258
+ video = []
259
+ for frame_idx in tqdm(range(latents.shape[0])):
260
+ video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
261
+ video = torch.cat(video)
262
+ video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
263
+ video = (video / 2 + 0.5).clamp(0, 1)
264
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
265
+ video = video.cpu().float().numpy()
266
+ return video
267
+
268
+ def prepare_extra_step_kwargs(self, generator, eta):
269
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
270
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
271
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
272
+ # and should be between [0, 1]
273
+
274
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
275
+ extra_step_kwargs = {}
276
+ if accepts_eta:
277
+ extra_step_kwargs["eta"] = eta
278
+
279
+ # check if the scheduler accepts generator
280
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
281
+ if accepts_generator:
282
+ extra_step_kwargs["generator"] = generator
283
+ return extra_step_kwargs
284
+
285
+ def check_inputs(self, prompt, height, width, callback_steps):
286
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
287
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
288
+
289
+ if height % 8 != 0 or width % 8 != 0:
290
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
291
+
292
+ if (callback_steps is None) or (
293
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
294
+ ):
295
+ raise ValueError(
296
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
297
+ f" {type(callback_steps)}."
298
+ )
299
+
300
+ def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
301
+ shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
302
+ if isinstance(generator, list) and len(generator) != batch_size:
303
+ raise ValueError(
304
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
305
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
306
+ )
307
+ if latents is None:
308
+ rand_device = "cpu" if device.type == "mps" else device
309
+
310
+ if isinstance(generator, list):
311
+ shape = shape
312
+ # shape = (1,) + shape[1:]
313
+ latents = [
314
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
315
+ for i in range(batch_size)
316
+ ]
317
+ latents = torch.cat(latents, dim=0).to(device)
318
+ else:
319
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
320
+ else:
321
+ if latents.shape != shape:
322
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
323
+ latents = latents.to(device)
324
+
325
+ # scale the initial noise by the standard deviation required by the scheduler
326
+ latents = latents * self.scheduler.init_noise_sigma
327
+ return latents
328
+
329
+ @torch.no_grad()
330
+ def __call__(
331
+ self,
332
+ prompt: Union[str, List[str]],
333
+ video_length: Optional[int],
334
+ height: Optional[int] = None,
335
+ width: Optional[int] = None,
336
+ num_inference_steps: int = 50,
337
+ guidance_scale: float = 7.5,
338
+ negative_prompt: Optional[Union[str, List[str]]] = None,
339
+ num_videos_per_prompt: Optional[int] = 1,
340
+ eta: float = 0.0,
341
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
342
+ latents: Optional[torch.FloatTensor] = None,
343
+ output_type: Optional[str] = "tensor",
344
+ return_dict: bool = True,
345
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
346
+ callback_steps: Optional[int] = 1,
347
+ **kwargs,
348
+ ):
349
+ # Default height and width to unet
350
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
351
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
352
+
353
+ # Check inputs. Raise error if not correct
354
+ self.check_inputs(prompt, height, width, callback_steps)
355
+
356
+ # Define call parameters
357
+ # batch_size = 1 if isinstance(prompt, str) else len(prompt)
358
+ batch_size = 1
359
+ if latents is not None:
360
+ batch_size = latents.shape[0]
361
+ if isinstance(prompt, list):
362
+ batch_size = len(prompt)
363
+
364
+ device = self._execution_device
365
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
366
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
367
+ # corresponds to doing no classifier free guidance.
368
+ do_classifier_free_guidance = guidance_scale > 1.0
369
+
370
+ # Encode input prompt
371
+ prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
372
+ if negative_prompt is not None:
373
+ negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size
374
+ text_embeddings = self._encode_prompt(
375
+ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
376
+ )
377
+
378
+ # Prepare timesteps
379
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
380
+ timesteps = self.scheduler.timesteps
381
+
382
+ # Prepare latent variables
383
+ num_channels_latents = self.unet.in_channels
384
+ latents = self.prepare_latents(
385
+ batch_size * num_videos_per_prompt,
386
+ num_channels_latents,
387
+ video_length,
388
+ height,
389
+ width,
390
+ text_embeddings.dtype,
391
+ device,
392
+ generator,
393
+ latents,
394
+ )
395
+ latents_dtype = latents.dtype
396
+
397
+ # Prepare extra step kwargs.
398
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
399
+
400
+ # Denoising loop
401
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
402
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
403
+ for i, t in enumerate(timesteps):
404
+ # expand the latents if we are doing classifier free guidance
405
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
406
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
407
+
408
+ # predict the noise residual
409
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
410
+
411
+ # perform guidance
412
+ if do_classifier_free_guidance:
413
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
414
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
415
+
416
+ # compute the previous noisy sample x_t -> x_t-1
417
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
418
+
419
+ # call the callback, if provided
420
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
421
+ progress_bar.update()
422
+ if callback is not None and i % callback_steps == 0:
423
+ callback(i, t, latents)
424
+
425
+ # Post-processing
426
+ video = self.decode_latents(latents)
427
+
428
+ # Convert to tensor
429
+ if output_type == "tensor":
430
+ video = torch.from_numpy(video)
431
+
432
+ if not return_dict:
433
+ return video
434
+
435
+ return AnimationPipelineOutput(videos=video)
436
+
437
+
438
+ class AnimationFreeInitPipeline(AnimationPipeline):
439
+ _optional_components = []
440
+
441
+ def __init__(
442
+ self,
443
+ vae: AutoencoderKL,
444
+ text_encoder: CLIPTextModel,
445
+ tokenizer: CLIPTokenizer,
446
+ unet: UNet3DConditionModel,
447
+ scheduler: Union[
448
+ DDIMScheduler,
449
+ PNDMScheduler,
450
+ LMSDiscreteScheduler,
451
+ EulerDiscreteScheduler,
452
+ EulerAncestralDiscreteScheduler,
453
+ DPMSolverMultistepScheduler,
454
+ ],
455
+ ):
456
+ super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
457
+ self.freq_filter = None
458
+
459
+
460
+ @torch.no_grad()
461
+ def init_filter(self, video_length, height, width, filter_params):
462
+ # initialize frequency filter for noise reinitialization
463
+ batch_size = 1
464
+ num_channels_latents = self.unet.in_channels
465
+ filter_shape = [
466
+ batch_size,
467
+ num_channels_latents,
468
+ video_length,
469
+ height // self.vae_scale_factor,
470
+ width // self.vae_scale_factor
471
+ ]
472
+ # self.freq_filter = get_freq_filter(filter_shape, device=self._execution_device, params=filter_params)
473
+ self.freq_filter = get_freq_filter(
474
+ filter_shape,
475
+ device=self._execution_device,
476
+ filter_type=filter_params.method,
477
+ n=filter_params.n,
478
+ d_s=filter_params.d_s,
479
+ d_t=filter_params.d_t
480
+ )
481
+
482
+ @torch.no_grad()
483
+ def __call__(
484
+ self,
485
+ prompt: Union[str, List[str]],
486
+ video_length: Optional[int],
487
+ height: Optional[int] = None,
488
+ width: Optional[int] = None,
489
+ num_inference_steps: int = 50,
490
+ guidance_scale: float = 7.5,
491
+ negative_prompt: Optional[Union[str, List[str]]] = None,
492
+ num_videos_per_prompt: Optional[int] = 1,
493
+ eta: float = 0.0,
494
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
495
+ latents: Optional[torch.FloatTensor] = None,
496
+ output_type: Optional[str] = "tensor",
497
+ return_dict: bool = True,
498
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
499
+ callback_steps: Optional[int] = 1,
500
+ # freeinit args
501
+ num_iters: int = 5,
502
+ use_fast_sampling: bool = False,
503
+ save_intermediate: bool = False,
504
+ return_orig: bool = False,
505
+ save_dir: str = None,
506
+ save_name: str = None,
507
+ use_fp16: bool = False,
508
+ **kwargs
509
+ ):
510
+ if use_fp16:
511
+ print('Warning: using half percision for inferencing!')
512
+ self.vae.to(dtype=torch.float16)
513
+ self.unet.to(dtype=torch.float16)
514
+ self.text_encoder.to(dtype=torch.float16)
515
+ # Default height and width to unet
516
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
517
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
518
+
519
+ # Check inputs. Raise error if not correct
520
+ # import pdb
521
+ # pdb.set_trace()
522
+ self.check_inputs(prompt, height, width, callback_steps)
523
+
524
+ # Define call parameters
525
+ # batch_size = 1 if isinstance(prompt, str) else len(prompt)
526
+ batch_size = 1
527
+ if latents is not None:
528
+ batch_size = latents.shape[0]
529
+ if isinstance(prompt, list):
530
+ batch_size = len(prompt)
531
+
532
+ device = self._execution_device
533
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
534
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
535
+ # corresponds to doing no classifier free guidance.
536
+ do_classifier_free_guidance = guidance_scale > 1.0
537
+
538
+ # Encode input prompt
539
+ prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
540
+ if negative_prompt is not None:
541
+ negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size
542
+ text_embeddings = self._encode_prompt(
543
+ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
544
+ )
545
+
546
+ # Prepare timesteps
547
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
548
+ timesteps = self.scheduler.timesteps
549
+
550
+ # Prepare latent variables
551
+ num_channels_latents = self.unet.in_channels
552
+ latents = self.prepare_latents(
553
+ batch_size * num_videos_per_prompt,
554
+ num_channels_latents,
555
+ video_length,
556
+ height,
557
+ width,
558
+ text_embeddings.dtype,
559
+ device,
560
+ generator,
561
+ latents,
562
+ )
563
+ latents_dtype = latents.dtype
564
+
565
+ # Prepare extra step kwargs.
566
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
567
+
568
+ # Sampling with FreeInit.
569
+ for iter in range(num_iters):
570
+ # FreeInit ------------------------------------------------------------------
571
+ if iter == 0:
572
+ initial_noise = latents.detach().clone()
573
+ else:
574
+ # 1. DDPM Forward with initial noise, get noisy latents z_T
575
+ # if use_fast_sampling:
576
+ # current_diffuse_timestep = self.scheduler.config.num_train_timesteps / num_iters * (iter + 1) - 1
577
+ # else:
578
+ # current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1
579
+ current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1 # diffuse to t=999 noise level
580
+ diffuse_timesteps = torch.full((batch_size,),int(current_diffuse_timestep))
581
+ diffuse_timesteps = diffuse_timesteps.long()
582
+ z_T = self.scheduler.add_noise(
583
+ original_samples=latents.to(device),
584
+ noise=initial_noise.to(device),
585
+ timesteps=diffuse_timesteps.to(device)
586
+ )
587
+ # 2. create random noise z_rand for high-frequency
588
+ z_rand = torch.randn((batch_size * num_videos_per_prompt, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor), device=device)
589
+ # 3. Roise Reinitialization
590
+ latents = freq_mix_3d(z_T.to(dtype=torch.float32), z_rand, LPF=self.freq_filter)
591
+ latents = latents.to(latents_dtype)
592
+
593
+ # Coarse-to-Fine Sampling for Fast Inference (can lead to sub-optimal results)
594
+ if use_fast_sampling:
595
+ current_num_inference_steps= int(num_inference_steps / num_iters * (iter + 1))
596
+ self.scheduler.set_timesteps(current_num_inference_steps, device=device)
597
+ timesteps = self.scheduler.timesteps
598
+ # --------------------------------------------------------------------------
599
+
600
+ # Denoising loop
601
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
602
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
603
+ # if use_fast_sampling:
604
+ # # Coarse-to-Fine Sampling for Fast Inference
605
+ # current_num_inference_steps= int(num_inference_steps / num_iters * (iter + 1))
606
+ # current_timesteps = timesteps[:current_num_inference_steps]
607
+ # else:
608
+ current_timesteps = timesteps
609
+ for i, t in enumerate(current_timesteps):
610
+ # expand the latents if we are doing classifier free guidance
611
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
612
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
613
+
614
+ # predict the noise residual
615
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
616
+
617
+ # perform guidance
618
+ if do_classifier_free_guidance:
619
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
620
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
621
+
622
+ # compute the previous noisy sample x_t -> x_t-1
623
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
624
+
625
+ # call the callback, if provided
626
+ if i == len(current_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
627
+ progress_bar.update()
628
+ if callback is not None and i % callback_steps == 0:
629
+ callback(i, t, latents)
630
+
631
+ # save intermediate results
632
+ if save_intermediate:
633
+ # Post-processing
634
+ video = self.decode_latents(latents)
635
+ video = torch.from_numpy(video)
636
+ os.makedirs(save_dir, exist_ok=True)
637
+ save_videos_grid(video, f"{save_dir}/{save_name}_iter{iter}.gif")
638
+
639
+ if return_orig and iter==0:
640
+ orig_video = self.decode_latents(latents)
641
+ orig_video = torch.from_numpy(orig_video)
642
+
643
+ # Post-processing
644
+ video = self.decode_latents(latents)
645
+
646
+ # Convert to tensor
647
+ if output_type == "tensor":
648
+ video = torch.from_numpy(video)
649
+
650
+ if not return_dict:
651
+ return video
652
+
653
+ if return_orig:
654
+ return AnimationFreeInitPipelineOutput(videos=video, orig_videos=orig_video)
655
+
656
+ return AnimationFreeInitPipelineOutput(videos=video)
animatediff/utils/convert_from_ckpt.py ADDED
@@ -0,0 +1,959 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Conversion script for the Stable Diffusion checkpoints."""
16
+
17
+ import re
18
+ from io import BytesIO
19
+ from typing import Optional
20
+
21
+ import requests
22
+ import torch
23
+ from transformers import (
24
+ AutoFeatureExtractor,
25
+ BertTokenizerFast,
26
+ CLIPImageProcessor,
27
+ CLIPTextModel,
28
+ CLIPTextModelWithProjection,
29
+ CLIPTokenizer,
30
+ CLIPVisionConfig,
31
+ CLIPVisionModelWithProjection,
32
+ )
33
+
34
+ from diffusers.models import (
35
+ AutoencoderKL,
36
+ PriorTransformer,
37
+ UNet2DConditionModel,
38
+ )
39
+ from diffusers.schedulers import (
40
+ DDIMScheduler,
41
+ DDPMScheduler,
42
+ DPMSolverMultistepScheduler,
43
+ EulerAncestralDiscreteScheduler,
44
+ EulerDiscreteScheduler,
45
+ HeunDiscreteScheduler,
46
+ LMSDiscreteScheduler,
47
+ PNDMScheduler,
48
+ UnCLIPScheduler,
49
+ )
50
+ from diffusers.utils.import_utils import BACKENDS_MAPPING
51
+
52
+
53
+ def shave_segments(path, n_shave_prefix_segments=1):
54
+ """
55
+ Removes segments. Positive values shave the first segments, negative shave the last segments.
56
+ """
57
+ if n_shave_prefix_segments >= 0:
58
+ return ".".join(path.split(".")[n_shave_prefix_segments:])
59
+ else:
60
+ return ".".join(path.split(".")[:n_shave_prefix_segments])
61
+
62
+
63
+ def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
64
+ """
65
+ Updates paths inside resnets to the new naming scheme (local renaming)
66
+ """
67
+ mapping = []
68
+ for old_item in old_list:
69
+ new_item = old_item.replace("in_layers.0", "norm1")
70
+ new_item = new_item.replace("in_layers.2", "conv1")
71
+
72
+ new_item = new_item.replace("out_layers.0", "norm2")
73
+ new_item = new_item.replace("out_layers.3", "conv2")
74
+
75
+ new_item = new_item.replace("emb_layers.1", "time_emb_proj")
76
+ new_item = new_item.replace("skip_connection", "conv_shortcut")
77
+
78
+ new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
79
+
80
+ mapping.append({"old": old_item, "new": new_item})
81
+
82
+ return mapping
83
+
84
+
85
+ def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
86
+ """
87
+ Updates paths inside resnets to the new naming scheme (local renaming)
88
+ """
89
+ mapping = []
90
+ for old_item in old_list:
91
+ new_item = old_item
92
+
93
+ new_item = new_item.replace("nin_shortcut", "conv_shortcut")
94
+ new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
95
+
96
+ mapping.append({"old": old_item, "new": new_item})
97
+
98
+ return mapping
99
+
100
+
101
+ def renew_attention_paths(old_list, n_shave_prefix_segments=0):
102
+ """
103
+ Updates paths inside attentions to the new naming scheme (local renaming)
104
+ """
105
+ mapping = []
106
+ for old_item in old_list:
107
+ new_item = old_item
108
+
109
+ # new_item = new_item.replace('norm.weight', 'group_norm.weight')
110
+ # new_item = new_item.replace('norm.bias', 'group_norm.bias')
111
+
112
+ # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
113
+ # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
114
+
115
+ # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
116
+
117
+ mapping.append({"old": old_item, "new": new_item})
118
+
119
+ return mapping
120
+
121
+
122
+ def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
123
+ """
124
+ Updates paths inside attentions to the new naming scheme (local renaming)
125
+ """
126
+ mapping = []
127
+ for old_item in old_list:
128
+ new_item = old_item
129
+
130
+ new_item = new_item.replace("norm.weight", "group_norm.weight")
131
+ new_item = new_item.replace("norm.bias", "group_norm.bias")
132
+
133
+ new_item = new_item.replace("q.weight", "query.weight")
134
+ new_item = new_item.replace("q.bias", "query.bias")
135
+
136
+ new_item = new_item.replace("k.weight", "key.weight")
137
+ new_item = new_item.replace("k.bias", "key.bias")
138
+
139
+ new_item = new_item.replace("v.weight", "value.weight")
140
+ new_item = new_item.replace("v.bias", "value.bias")
141
+
142
+ new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
143
+ new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
144
+
145
+ new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
146
+
147
+ mapping.append({"old": old_item, "new": new_item})
148
+
149
+ return mapping
150
+
151
+
152
+ def assign_to_checkpoint(
153
+ paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
154
+ ):
155
+ """
156
+ This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
157
+ attention layers, and takes into account additional replacements that may arise.
158
+
159
+ Assigns the weights to the new checkpoint.
160
+ """
161
+ assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
162
+
163
+ # Splits the attention layers into three variables.
164
+ if attention_paths_to_split is not None:
165
+ for path, path_map in attention_paths_to_split.items():
166
+ old_tensor = old_checkpoint[path]
167
+ channels = old_tensor.shape[0] // 3
168
+
169
+ target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
170
+
171
+ num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
172
+
173
+ old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
174
+ query, key, value = old_tensor.split(channels // num_heads, dim=1)
175
+
176
+ checkpoint[path_map["query"]] = query.reshape(target_shape)
177
+ checkpoint[path_map["key"]] = key.reshape(target_shape)
178
+ checkpoint[path_map["value"]] = value.reshape(target_shape)
179
+
180
+ for path in paths:
181
+ new_path = path["new"]
182
+
183
+ # These have already been assigned
184
+ if attention_paths_to_split is not None and new_path in attention_paths_to_split:
185
+ continue
186
+
187
+ # Global renaming happens here
188
+ new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
189
+ new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
190
+ new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
191
+
192
+ if additional_replacements is not None:
193
+ for replacement in additional_replacements:
194
+ new_path = new_path.replace(replacement["old"], replacement["new"])
195
+
196
+ # proj_attn.weight has to be converted from conv 1D to linear
197
+ if "proj_attn.weight" in new_path:
198
+ checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
199
+ else:
200
+ checkpoint[new_path] = old_checkpoint[path["old"]]
201
+
202
+
203
+ def conv_attn_to_linear(checkpoint):
204
+ keys = list(checkpoint.keys())
205
+ attn_keys = ["query.weight", "key.weight", "value.weight"]
206
+ for key in keys:
207
+ if ".".join(key.split(".")[-2:]) in attn_keys:
208
+ if checkpoint[key].ndim > 2:
209
+ checkpoint[key] = checkpoint[key][:, :, 0, 0]
210
+ elif "proj_attn.weight" in key:
211
+ if checkpoint[key].ndim > 2:
212
+ checkpoint[key] = checkpoint[key][:, :, 0]
213
+
214
+
215
+ def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
216
+ """
217
+ Creates a config for the diffusers based on the config of the LDM model.
218
+ """
219
+ if controlnet:
220
+ unet_params = original_config.model.params.control_stage_config.params
221
+ else:
222
+ unet_params = original_config.model.params.unet_config.params
223
+
224
+ vae_params = original_config.model.params.first_stage_config.params.ddconfig
225
+
226
+ block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
227
+
228
+ down_block_types = []
229
+ resolution = 1
230
+ for i in range(len(block_out_channels)):
231
+ block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
232
+ down_block_types.append(block_type)
233
+ if i != len(block_out_channels) - 1:
234
+ resolution *= 2
235
+
236
+ up_block_types = []
237
+ for i in range(len(block_out_channels)):
238
+ block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
239
+ up_block_types.append(block_type)
240
+ resolution //= 2
241
+
242
+ vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
243
+
244
+ head_dim = unet_params.num_heads if "num_heads" in unet_params else None
245
+ use_linear_projection = (
246
+ unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
247
+ )
248
+ if use_linear_projection:
249
+ # stable diffusion 2-base-512 and 2-768
250
+ if head_dim is None:
251
+ head_dim = [5, 10, 20, 20]
252
+
253
+ class_embed_type = None
254
+ projection_class_embeddings_input_dim = None
255
+
256
+ if "num_classes" in unet_params:
257
+ if unet_params.num_classes == "sequential":
258
+ class_embed_type = "projection"
259
+ assert "adm_in_channels" in unet_params
260
+ projection_class_embeddings_input_dim = unet_params.adm_in_channels
261
+ else:
262
+ raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}")
263
+
264
+ config = {
265
+ "sample_size": image_size // vae_scale_factor,
266
+ "in_channels": unet_params.in_channels,
267
+ "down_block_types": tuple(down_block_types),
268
+ "block_out_channels": tuple(block_out_channels),
269
+ "layers_per_block": unet_params.num_res_blocks,
270
+ "cross_attention_dim": unet_params.context_dim,
271
+ "attention_head_dim": head_dim,
272
+ "use_linear_projection": use_linear_projection,
273
+ "class_embed_type": class_embed_type,
274
+ "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
275
+ }
276
+
277
+ if not controlnet:
278
+ config["out_channels"] = unet_params.out_channels
279
+ config["up_block_types"] = tuple(up_block_types)
280
+
281
+ return config
282
+
283
+
284
+ def create_vae_diffusers_config(original_config, image_size: int):
285
+ """
286
+ Creates a config for the diffusers based on the config of the LDM model.
287
+ """
288
+ vae_params = original_config.model.params.first_stage_config.params.ddconfig
289
+ _ = original_config.model.params.first_stage_config.params.embed_dim
290
+
291
+ block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
292
+ down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
293
+ up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
294
+
295
+ config = {
296
+ "sample_size": image_size,
297
+ "in_channels": vae_params.in_channels,
298
+ "out_channels": vae_params.out_ch,
299
+ "down_block_types": tuple(down_block_types),
300
+ "up_block_types": tuple(up_block_types),
301
+ "block_out_channels": tuple(block_out_channels),
302
+ "latent_channels": vae_params.z_channels,
303
+ "layers_per_block": vae_params.num_res_blocks,
304
+ }
305
+ return config
306
+
307
+
308
+ def create_diffusers_schedular(original_config):
309
+ schedular = DDIMScheduler(
310
+ num_train_timesteps=original_config.model.params.timesteps,
311
+ beta_start=original_config.model.params.linear_start,
312
+ beta_end=original_config.model.params.linear_end,
313
+ beta_schedule="scaled_linear",
314
+ )
315
+ return schedular
316
+
317
+
318
+ def create_ldm_bert_config(original_config):
319
+ bert_params = original_config.model.parms.cond_stage_config.params
320
+ config = LDMBertConfig(
321
+ d_model=bert_params.n_embed,
322
+ encoder_layers=bert_params.n_layer,
323
+ encoder_ffn_dim=bert_params.n_embed * 4,
324
+ )
325
+ return config
326
+
327
+
328
+ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False):
329
+ """
330
+ Takes a state dict and a config, and returns a converted checkpoint.
331
+ """
332
+
333
+ # extract state_dict for UNet
334
+ unet_state_dict = {}
335
+ keys = list(checkpoint.keys())
336
+
337
+ if controlnet:
338
+ unet_key = "control_model."
339
+ else:
340
+ unet_key = "model.diffusion_model."
341
+
342
+ # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
343
+ if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
344
+ print(f"Checkpoint {path} has both EMA and non-EMA weights.")
345
+ print(
346
+ "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
347
+ " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
348
+ )
349
+ for key in keys:
350
+ if key.startswith("model.diffusion_model"):
351
+ flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
352
+ unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
353
+ else:
354
+ if sum(k.startswith("model_ema") for k in keys) > 100:
355
+ print(
356
+ "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
357
+ " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
358
+ )
359
+
360
+ for key in keys:
361
+ if key.startswith(unet_key):
362
+ unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
363
+
364
+ new_checkpoint = {}
365
+
366
+ new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
367
+ new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
368
+ new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
369
+ new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
370
+
371
+ if config["class_embed_type"] is None:
372
+ # No parameters to port
373
+ ...
374
+ elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
375
+ new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
376
+ new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
377
+ new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
378
+ new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
379
+ else:
380
+ raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
381
+
382
+ new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
383
+ new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
384
+
385
+ if not controlnet:
386
+ new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
387
+ new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
388
+ new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
389
+ new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
390
+
391
+ # Retrieves the keys for the input blocks only
392
+ num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
393
+ input_blocks = {
394
+ layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
395
+ for layer_id in range(num_input_blocks)
396
+ }
397
+
398
+ # Retrieves the keys for the middle blocks only
399
+ num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
400
+ middle_blocks = {
401
+ layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
402
+ for layer_id in range(num_middle_blocks)
403
+ }
404
+
405
+ # Retrieves the keys for the output blocks only
406
+ num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
407
+ output_blocks = {
408
+ layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
409
+ for layer_id in range(num_output_blocks)
410
+ }
411
+
412
+ for i in range(1, num_input_blocks):
413
+ block_id = (i - 1) // (config["layers_per_block"] + 1)
414
+ layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
415
+
416
+ resnets = [
417
+ key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
418
+ ]
419
+ attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
420
+
421
+ if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
422
+ new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
423
+ f"input_blocks.{i}.0.op.weight"
424
+ )
425
+ new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
426
+ f"input_blocks.{i}.0.op.bias"
427
+ )
428
+
429
+ paths = renew_resnet_paths(resnets)
430
+ meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
431
+ assign_to_checkpoint(
432
+ paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
433
+ )
434
+
435
+ if len(attentions):
436
+ paths = renew_attention_paths(attentions)
437
+ meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
438
+ assign_to_checkpoint(
439
+ paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
440
+ )
441
+
442
+ resnet_0 = middle_blocks[0]
443
+ attentions = middle_blocks[1]
444
+ resnet_1 = middle_blocks[2]
445
+
446
+ resnet_0_paths = renew_resnet_paths(resnet_0)
447
+ assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
448
+
449
+ resnet_1_paths = renew_resnet_paths(resnet_1)
450
+ assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
451
+
452
+ attentions_paths = renew_attention_paths(attentions)
453
+ meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
454
+ assign_to_checkpoint(
455
+ attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
456
+ )
457
+
458
+ for i in range(num_output_blocks):
459
+ block_id = i // (config["layers_per_block"] + 1)
460
+ layer_in_block_id = i % (config["layers_per_block"] + 1)
461
+ output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
462
+ output_block_list = {}
463
+
464
+ for layer in output_block_layers:
465
+ layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
466
+ if layer_id in output_block_list:
467
+ output_block_list[layer_id].append(layer_name)
468
+ else:
469
+ output_block_list[layer_id] = [layer_name]
470
+
471
+ if len(output_block_list) > 1:
472
+ resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
473
+ attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
474
+
475
+ resnet_0_paths = renew_resnet_paths(resnets)
476
+ paths = renew_resnet_paths(resnets)
477
+
478
+ meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
479
+ assign_to_checkpoint(
480
+ paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
481
+ )
482
+
483
+ output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
484
+ if ["conv.bias", "conv.weight"] in output_block_list.values():
485
+ index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
486
+ new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
487
+ f"output_blocks.{i}.{index}.conv.weight"
488
+ ]
489
+ new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
490
+ f"output_blocks.{i}.{index}.conv.bias"
491
+ ]
492
+
493
+ # Clear attentions as they have been attributed above.
494
+ if len(attentions) == 2:
495
+ attentions = []
496
+
497
+ if len(attentions):
498
+ paths = renew_attention_paths(attentions)
499
+ meta_path = {
500
+ "old": f"output_blocks.{i}.1",
501
+ "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
502
+ }
503
+ assign_to_checkpoint(
504
+ paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
505
+ )
506
+ else:
507
+ resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
508
+ for path in resnet_0_paths:
509
+ old_path = ".".join(["output_blocks", str(i), path["old"]])
510
+ new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
511
+
512
+ new_checkpoint[new_path] = unet_state_dict[old_path]
513
+
514
+ if controlnet:
515
+ # conditioning embedding
516
+
517
+ orig_index = 0
518
+
519
+ new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
520
+ f"input_hint_block.{orig_index}.weight"
521
+ )
522
+ new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
523
+ f"input_hint_block.{orig_index}.bias"
524
+ )
525
+
526
+ orig_index += 2
527
+
528
+ diffusers_index = 0
529
+
530
+ while diffusers_index < 6:
531
+ new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
532
+ f"input_hint_block.{orig_index}.weight"
533
+ )
534
+ new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
535
+ f"input_hint_block.{orig_index}.bias"
536
+ )
537
+ diffusers_index += 1
538
+ orig_index += 2
539
+
540
+ new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
541
+ f"input_hint_block.{orig_index}.weight"
542
+ )
543
+ new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
544
+ f"input_hint_block.{orig_index}.bias"
545
+ )
546
+
547
+ # down blocks
548
+ for i in range(num_input_blocks):
549
+ new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
550
+ new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")
551
+
552
+ # mid block
553
+ new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
554
+ new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")
555
+
556
+ return new_checkpoint
557
+
558
+
559
+ def convert_ldm_vae_checkpoint(checkpoint, config):
560
+ # extract state dict for VAE
561
+ vae_state_dict = {}
562
+ vae_key = "first_stage_model."
563
+ keys = list(checkpoint.keys())
564
+ for key in keys:
565
+ if key.startswith(vae_key):
566
+ vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
567
+
568
+ new_checkpoint = {}
569
+
570
+ new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
571
+ new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
572
+ new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
573
+ new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
574
+ new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
575
+ new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
576
+
577
+ new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
578
+ new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
579
+ new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
580
+ new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
581
+ new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
582
+ new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
583
+
584
+ new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
585
+ new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
586
+ new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
587
+ new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
588
+
589
+ # Retrieves the keys for the encoder down blocks only
590
+ num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
591
+ down_blocks = {
592
+ layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
593
+ }
594
+
595
+ # Retrieves the keys for the decoder up blocks only
596
+ num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
597
+ up_blocks = {
598
+ layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
599
+ }
600
+
601
+ for i in range(num_down_blocks):
602
+ resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
603
+
604
+ if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
605
+ new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
606
+ f"encoder.down.{i}.downsample.conv.weight"
607
+ )
608
+ new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
609
+ f"encoder.down.{i}.downsample.conv.bias"
610
+ )
611
+
612
+ paths = renew_vae_resnet_paths(resnets)
613
+ meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
614
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
615
+
616
+ mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
617
+ num_mid_res_blocks = 2
618
+ for i in range(1, num_mid_res_blocks + 1):
619
+ resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
620
+
621
+ paths = renew_vae_resnet_paths(resnets)
622
+ meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
623
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
624
+
625
+ mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
626
+ paths = renew_vae_attention_paths(mid_attentions)
627
+ meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
628
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
629
+ conv_attn_to_linear(new_checkpoint)
630
+
631
+ for i in range(num_up_blocks):
632
+ block_id = num_up_blocks - 1 - i
633
+ resnets = [
634
+ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
635
+ ]
636
+
637
+ if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
638
+ new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
639
+ f"decoder.up.{block_id}.upsample.conv.weight"
640
+ ]
641
+ new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
642
+ f"decoder.up.{block_id}.upsample.conv.bias"
643
+ ]
644
+
645
+ paths = renew_vae_resnet_paths(resnets)
646
+ meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
647
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
648
+
649
+ mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
650
+ num_mid_res_blocks = 2
651
+ for i in range(1, num_mid_res_blocks + 1):
652
+ resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
653
+
654
+ paths = renew_vae_resnet_paths(resnets)
655
+ meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
656
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
657
+
658
+ mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
659
+ paths = renew_vae_attention_paths(mid_attentions)
660
+ meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
661
+ assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
662
+ conv_attn_to_linear(new_checkpoint)
663
+ return new_checkpoint
664
+
665
+
666
+ def convert_ldm_bert_checkpoint(checkpoint, config):
667
+ def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
668
+ hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
669
+ hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
670
+ hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
671
+
672
+ hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
673
+ hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
674
+
675
+ def _copy_linear(hf_linear, pt_linear):
676
+ hf_linear.weight = pt_linear.weight
677
+ hf_linear.bias = pt_linear.bias
678
+
679
+ def _copy_layer(hf_layer, pt_layer):
680
+ # copy layer norms
681
+ _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
682
+ _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
683
+
684
+ # copy attn
685
+ _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
686
+
687
+ # copy MLP
688
+ pt_mlp = pt_layer[1][1]
689
+ _copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
690
+ _copy_linear(hf_layer.fc2, pt_mlp.net[2])
691
+
692
+ def _copy_layers(hf_layers, pt_layers):
693
+ for i, hf_layer in enumerate(hf_layers):
694
+ if i != 0:
695
+ i += i
696
+ pt_layer = pt_layers[i : i + 2]
697
+ _copy_layer(hf_layer, pt_layer)
698
+
699
+ hf_model = LDMBertModel(config).eval()
700
+
701
+ # copy embeds
702
+ hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
703
+ hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
704
+
705
+ # copy layer norm
706
+ _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
707
+
708
+ # copy hidden layers
709
+ _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
710
+
711
+ _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
712
+
713
+ return hf_model
714
+
715
+
716
+ def convert_ldm_clip_checkpoint(checkpoint):
717
+ text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
718
+ keys = list(checkpoint.keys())
719
+
720
+ text_model_dict = {}
721
+
722
+ for key in keys:
723
+ if key.startswith("cond_stage_model.transformer"):
724
+ text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
725
+
726
+ text_model.load_state_dict(text_model_dict)
727
+
728
+ return text_model
729
+
730
+
731
+ textenc_conversion_lst = [
732
+ ("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
733
+ ("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
734
+ ("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
735
+ ("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
736
+ ]
737
+ textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
738
+
739
+ textenc_transformer_conversion_lst = [
740
+ # (stable-diffusion, HF Diffusers)
741
+ ("resblocks.", "text_model.encoder.layers."),
742
+ ("ln_1", "layer_norm1"),
743
+ ("ln_2", "layer_norm2"),
744
+ (".c_fc.", ".fc1."),
745
+ (".c_proj.", ".fc2."),
746
+ (".attn", ".self_attn"),
747
+ ("ln_final.", "transformer.text_model.final_layer_norm."),
748
+ ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
749
+ ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
750
+ ]
751
+ protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
752
+ textenc_pattern = re.compile("|".join(protected.keys()))
753
+
754
+
755
+ def convert_paint_by_example_checkpoint(checkpoint):
756
+ config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
757
+ model = PaintByExampleImageEncoder(config)
758
+
759
+ keys = list(checkpoint.keys())
760
+
761
+ text_model_dict = {}
762
+
763
+ for key in keys:
764
+ if key.startswith("cond_stage_model.transformer"):
765
+ text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
766
+
767
+ # load clip vision
768
+ model.model.load_state_dict(text_model_dict)
769
+
770
+ # load mapper
771
+ keys_mapper = {
772
+ k[len("cond_stage_model.mapper.res") :]: v
773
+ for k, v in checkpoint.items()
774
+ if k.startswith("cond_stage_model.mapper")
775
+ }
776
+
777
+ MAPPING = {
778
+ "attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
779
+ "attn.c_proj": ["attn1.to_out.0"],
780
+ "ln_1": ["norm1"],
781
+ "ln_2": ["norm3"],
782
+ "mlp.c_fc": ["ff.net.0.proj"],
783
+ "mlp.c_proj": ["ff.net.2"],
784
+ }
785
+
786
+ mapped_weights = {}
787
+ for key, value in keys_mapper.items():
788
+ prefix = key[: len("blocks.i")]
789
+ suffix = key.split(prefix)[-1].split(".")[-1]
790
+ name = key.split(prefix)[-1].split(suffix)[0][1:-1]
791
+ mapped_names = MAPPING[name]
792
+
793
+ num_splits = len(mapped_names)
794
+ for i, mapped_name in enumerate(mapped_names):
795
+ new_name = ".".join([prefix, mapped_name, suffix])
796
+ shape = value.shape[0] // num_splits
797
+ mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
798
+
799
+ model.mapper.load_state_dict(mapped_weights)
800
+
801
+ # load final layer norm
802
+ model.final_layer_norm.load_state_dict(
803
+ {
804
+ "bias": checkpoint["cond_stage_model.final_ln.bias"],
805
+ "weight": checkpoint["cond_stage_model.final_ln.weight"],
806
+ }
807
+ )
808
+
809
+ # load final proj
810
+ model.proj_out.load_state_dict(
811
+ {
812
+ "bias": checkpoint["proj_out.bias"],
813
+ "weight": checkpoint["proj_out.weight"],
814
+ }
815
+ )
816
+
817
+ # load uncond vector
818
+ model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
819
+ return model
820
+
821
+
822
+ def convert_open_clip_checkpoint(checkpoint):
823
+ text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
824
+
825
+ keys = list(checkpoint.keys())
826
+
827
+ text_model_dict = {}
828
+
829
+ if "cond_stage_model.model.text_projection" in checkpoint:
830
+ d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
831
+ else:
832
+ d_model = 1024
833
+
834
+ text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
835
+
836
+ for key in keys:
837
+ if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
838
+ continue
839
+ if key in textenc_conversion_map:
840
+ text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
841
+ if key.startswith("cond_stage_model.model.transformer."):
842
+ new_key = key[len("cond_stage_model.model.transformer.") :]
843
+ if new_key.endswith(".in_proj_weight"):
844
+ new_key = new_key[: -len(".in_proj_weight")]
845
+ new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
846
+ text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
847
+ text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
848
+ text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
849
+ elif new_key.endswith(".in_proj_bias"):
850
+ new_key = new_key[: -len(".in_proj_bias")]
851
+ new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
852
+ text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
853
+ text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
854
+ text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
855
+ else:
856
+ new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
857
+
858
+ text_model_dict[new_key] = checkpoint[key]
859
+
860
+ text_model.load_state_dict(text_model_dict)
861
+
862
+ return text_model
863
+
864
+
865
+ def stable_unclip_image_encoder(original_config):
866
+ """
867
+ Returns the image processor and clip image encoder for the img2img unclip pipeline.
868
+
869
+ We currently know of two types of stable unclip models which separately use the clip and the openclip image
870
+ encoders.
871
+ """
872
+
873
+ image_embedder_config = original_config.model.params.embedder_config
874
+
875
+ sd_clip_image_embedder_class = image_embedder_config.target
876
+ sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1]
877
+
878
+ if sd_clip_image_embedder_class == "ClipImageEmbedder":
879
+ clip_model_name = image_embedder_config.params.model
880
+
881
+ if clip_model_name == "ViT-L/14":
882
+ feature_extractor = CLIPImageProcessor()
883
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
884
+ else:
885
+ raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}")
886
+
887
+ elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder":
888
+ feature_extractor = CLIPImageProcessor()
889
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
890
+ else:
891
+ raise NotImplementedError(
892
+ f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}"
893
+ )
894
+
895
+ return feature_extractor, image_encoder
896
+
897
+
898
+ def stable_unclip_image_noising_components(
899
+ original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None
900
+ ):
901
+ """
902
+ Returns the noising components for the img2img and txt2img unclip pipelines.
903
+
904
+ Converts the stability noise augmentor into
905
+ 1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats
906
+ 2. a `DDPMScheduler` for holding the noise schedule
907
+
908
+ If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided.
909
+ """
910
+ noise_aug_config = original_config.model.params.noise_aug_config
911
+ noise_aug_class = noise_aug_config.target
912
+ noise_aug_class = noise_aug_class.split(".")[-1]
913
+
914
+ if noise_aug_class == "CLIPEmbeddingNoiseAugmentation":
915
+ noise_aug_config = noise_aug_config.params
916
+ embedding_dim = noise_aug_config.timestep_dim
917
+ max_noise_level = noise_aug_config.noise_schedule_config.timesteps
918
+ beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule
919
+
920
+ image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim)
921
+ image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule)
922
+
923
+ if "clip_stats_path" in noise_aug_config:
924
+ if clip_stats_path is None:
925
+ raise ValueError("This stable unclip config requires a `clip_stats_path`")
926
+
927
+ clip_mean, clip_std = torch.load(clip_stats_path, map_location=device)
928
+ clip_mean = clip_mean[None, :]
929
+ clip_std = clip_std[None, :]
930
+
931
+ clip_stats_state_dict = {
932
+ "mean": clip_mean,
933
+ "std": clip_std,
934
+ }
935
+
936
+ image_normalizer.load_state_dict(clip_stats_state_dict)
937
+ else:
938
+ raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}")
939
+
940
+ return image_normalizer, image_noising_scheduler
941
+
942
+
943
+ def convert_controlnet_checkpoint(
944
+ checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema
945
+ ):
946
+ ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
947
+ ctrlnet_config["upcast_attention"] = upcast_attention
948
+
949
+ ctrlnet_config.pop("sample_size")
950
+
951
+ controlnet_model = ControlNetModel(**ctrlnet_config)
952
+
953
+ converted_ctrl_checkpoint = convert_ldm_unet_checkpoint(
954
+ checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True
955
+ )
956
+
957
+ controlnet_model.load_state_dict(converted_ctrl_checkpoint)
958
+
959
+ return controlnet_model
animatediff/utils/convert_lora_safetensor_to_diffusers.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Conversion script for the LoRA's safetensors checkpoints. """
17
+
18
+ import argparse
19
+
20
+ import torch
21
+ from safetensors.torch import load_file
22
+
23
+ from diffusers import StableDiffusionPipeline
24
+ import pdb
25
+
26
+
27
+
28
+ def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0):
29
+ # directly update weight in diffusers model
30
+ for key in state_dict:
31
+ # only process lora down key
32
+ if "up." in key: continue
33
+
34
+ up_key = key.replace(".down.", ".up.")
35
+ model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
36
+ model_key = model_key.replace("to_out.", "to_out.0.")
37
+ layer_infos = model_key.split(".")[:-1]
38
+
39
+ curr_layer = pipeline.unet
40
+ while len(layer_infos) > 0:
41
+ temp_name = layer_infos.pop(0)
42
+ curr_layer = curr_layer.__getattr__(temp_name)
43
+
44
+ weight_down = state_dict[key]
45
+ weight_up = state_dict[up_key]
46
+ curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
47
+
48
+ return pipeline
49
+
50
+
51
+
52
+ def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
53
+ # load base model
54
+ # pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
55
+
56
+ # load LoRA weight from .safetensors
57
+ # state_dict = load_file(checkpoint_path)
58
+
59
+ visited = []
60
+
61
+ # directly update weight in diffusers model
62
+ for key in state_dict:
63
+ # it is suggested to print out the key, it usually will be something like below
64
+ # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
65
+
66
+ # as we have set the alpha beforehand, so just skip
67
+ if ".alpha" in key or key in visited:
68
+ continue
69
+
70
+ if "text" in key:
71
+ layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
72
+ curr_layer = pipeline.text_encoder
73
+ else:
74
+ layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
75
+ curr_layer = pipeline.unet
76
+
77
+ # find the target layer
78
+ temp_name = layer_infos.pop(0)
79
+ while len(layer_infos) > -1:
80
+ try:
81
+ curr_layer = curr_layer.__getattr__(temp_name)
82
+ if len(layer_infos) > 0:
83
+ temp_name = layer_infos.pop(0)
84
+ elif len(layer_infos) == 0:
85
+ break
86
+ except Exception:
87
+ if len(temp_name) > 0:
88
+ temp_name += "_" + layer_infos.pop(0)
89
+ else:
90
+ temp_name = layer_infos.pop(0)
91
+
92
+ pair_keys = []
93
+ if "lora_down" in key:
94
+ pair_keys.append(key.replace("lora_down", "lora_up"))
95
+ pair_keys.append(key)
96
+ else:
97
+ pair_keys.append(key)
98
+ pair_keys.append(key.replace("lora_up", "lora_down"))
99
+
100
+ # update weight
101
+ if len(state_dict[pair_keys[0]].shape) == 4:
102
+ weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
103
+ weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
104
+ curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device)
105
+ else:
106
+ weight_up = state_dict[pair_keys[0]].to(torch.float32)
107
+ weight_down = state_dict[pair_keys[1]].to(torch.float32)
108
+ curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)
109
+
110
+ # update visited list
111
+ for item in pair_keys:
112
+ visited.append(item)
113
+
114
+ return pipeline
115
+
116
+
117
+ if __name__ == "__main__":
118
+ parser = argparse.ArgumentParser()
119
+
120
+ parser.add_argument(
121
+ "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
122
+ )
123
+ parser.add_argument(
124
+ "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
125
+ )
126
+ parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
127
+ parser.add_argument(
128
+ "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
129
+ )
130
+ parser.add_argument(
131
+ "--lora_prefix_text_encoder",
132
+ default="lora_te",
133
+ type=str,
134
+ help="The prefix of text encoder weight in safetensors",
135
+ )
136
+ parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
137
+ parser.add_argument(
138
+ "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
139
+ )
140
+ parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
141
+
142
+ args = parser.parse_args()
143
+
144
+ base_model_path = args.base_model_path
145
+ checkpoint_path = args.checkpoint_path
146
+ dump_path = args.dump_path
147
+ lora_prefix_unet = args.lora_prefix_unet
148
+ lora_prefix_text_encoder = args.lora_prefix_text_encoder
149
+ alpha = args.alpha
150
+
151
+ pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
152
+
153
+ pipe = pipe.to(args.device)
154
+ pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
animatediff/utils/freeinit_utils.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.fft as fft
3
+ import math
4
+
5
+
6
+ def freq_mix_3d(x, noise, LPF):
7
+ """
8
+ Noise reinitialization.
9
+
10
+ Args:
11
+ x: diffused latent
12
+ noise: randomly sampled noise
13
+ LPF: low pass filter
14
+ """
15
+ # FFT
16
+ x_freq = fft.fftn(x, dim=(-3, -2, -1))
17
+ x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
18
+ noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
19
+ noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))
20
+
21
+ # frequency mix
22
+ HPF = 1 - LPF
23
+ x_freq_low = x_freq * LPF
24
+ noise_freq_high = noise_freq * HPF
25
+ x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain
26
+
27
+ # IFFT
28
+ x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
29
+ x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real
30
+
31
+ return x_mixed
32
+
33
+
34
+ def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
35
+ """
36
+ Form the frequency filter for noise reinitialization.
37
+
38
+ Args:
39
+ shape: shape of latent (B, C, T, H, W)
40
+ filter_type: type of the freq filter
41
+ n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian
42
+ d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
43
+ d_t: normalized stop frequency for temporal dimension (0.0-1.0)
44
+ """
45
+ if filter_type == "gaussian":
46
+ return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
47
+ elif filter_type == "ideal":
48
+ return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
49
+ elif filter_type == "box":
50
+ return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
51
+ elif filter_type == "butterworth":
52
+ return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
53
+ else:
54
+ raise NotImplementedError
55
+
56
+ def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
57
+ """
58
+ Compute the gaussian low pass filter mask.
59
+
60
+ Args:
61
+ shape: shape of the filter (volume)
62
+ d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
63
+ d_t: normalized stop frequency for temporal dimension (0.0-1.0)
64
+ """
65
+ T, H, W = shape[-3], shape[-2], shape[-1]
66
+ mask = torch.zeros(shape)
67
+ if d_s==0 or d_t==0:
68
+ return mask
69
+ for t in range(T):
70
+ for h in range(H):
71
+ for w in range(W):
72
+ d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
73
+ mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square)
74
+ return mask
75
+
76
+
77
+ def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
78
+ """
79
+ Compute the butterworth low pass filter mask.
80
+
81
+ Args:
82
+ shape: shape of the filter (volume)
83
+ n: order of the filter, larger n ~ ideal, smaller n ~ gaussian
84
+ d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
85
+ d_t: normalized stop frequency for temporal dimension (0.0-1.0)
86
+ """
87
+ T, H, W = shape[-3], shape[-2], shape[-1]
88
+ mask = torch.zeros(shape)
89
+ if d_s==0 or d_t==0:
90
+ return mask
91
+ for t in range(T):
92
+ for h in range(H):
93
+ for w in range(W):
94
+ d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
95
+ mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n)
96
+ return mask
97
+
98
+
99
+ def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
100
+ """
101
+ Compute the ideal low pass filter mask.
102
+
103
+ Args:
104
+ shape: shape of the filter (volume)
105
+ d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
106
+ d_t: normalized stop frequency for temporal dimension (0.0-1.0)
107
+ """
108
+ T, H, W = shape[-3], shape[-2], shape[-1]
109
+ mask = torch.zeros(shape)
110
+ if d_s==0 or d_t==0:
111
+ return mask
112
+ for t in range(T):
113
+ for h in range(H):
114
+ for w in range(W):
115
+ d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
116
+ mask[..., t,h,w] = 1 if d_square <= d_s*2 else 0
117
+ return mask
118
+
119
+
120
+ def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
121
+ """
122
+ Compute the ideal low pass filter mask (approximated version).
123
+
124
+ Args:
125
+ shape: shape of the filter (volume)
126
+ d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
127
+ d_t: normalized stop frequency for temporal dimension (0.0-1.0)
128
+ """
129
+ T, H, W = shape[-3], shape[-2], shape[-1]
130
+ mask = torch.zeros(shape)
131
+ if d_s==0 or d_t==0:
132
+ return mask
133
+
134
+ threshold_s = round(int(H // 2) * d_s)
135
+ threshold_t = round(T // 2 * d_t)
136
+
137
+ cframe, crow, ccol = T // 2, H // 2, W //2
138
+ mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0
139
+
140
+ return mask
animatediff/utils/util.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import imageio
3
+ import numpy as np
4
+ from typing import Union
5
+
6
+ import torch
7
+ import torchvision
8
+ import torch.distributed as dist
9
+
10
+ from safetensors import safe_open
11
+ from tqdm import tqdm
12
+ from einops import rearrange
13
+ from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
14
+ from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, convert_motion_lora_ckpt_to_diffusers
15
+
16
+
17
+ def zero_rank_print(s):
18
+ if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
19
+
20
+
21
+ def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
22
+ videos = rearrange(videos, "b c t h w -> t b c h w")
23
+ outputs = []
24
+ for x in videos:
25
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
26
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
27
+ if rescale:
28
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
29
+ x = (x * 255).numpy().astype(np.uint8)
30
+ outputs.append(x)
31
+
32
+ os.makedirs(os.path.dirname(path), exist_ok=True)
33
+ imageio.mimsave(path, outputs, fps=fps)
34
+
35
+
36
+ # DDIM Inversion
37
+ @torch.no_grad()
38
+ def init_prompt(prompt, pipeline):
39
+ uncond_input = pipeline.tokenizer(
40
+ [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
41
+ return_tensors="pt"
42
+ )
43
+ uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
44
+ text_input = pipeline.tokenizer(
45
+ [prompt],
46
+ padding="max_length",
47
+ max_length=pipeline.tokenizer.model_max_length,
48
+ truncation=True,
49
+ return_tensors="pt",
50
+ )
51
+ text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
52
+ context = torch.cat([uncond_embeddings, text_embeddings])
53
+
54
+ return context
55
+
56
+
57
+ def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
58
+ sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
59
+ timestep, next_timestep = min(
60
+ timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
61
+ alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
62
+ alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
63
+ beta_prod_t = 1 - alpha_prod_t
64
+ next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
65
+ next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
66
+ next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
67
+ return next_sample
68
+
69
+
70
+ def get_noise_pred_single(latents, t, context, unet):
71
+ noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
72
+ return noise_pred
73
+
74
+
75
+ @torch.no_grad()
76
+ def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
77
+ context = init_prompt(prompt, pipeline)
78
+ uncond_embeddings, cond_embeddings = context.chunk(2)
79
+ all_latent = [latent]
80
+ latent = latent.clone().detach()
81
+ for i in tqdm(range(num_inv_steps)):
82
+ t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
83
+ noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
84
+ latent = next_step(noise_pred, t, latent, ddim_scheduler)
85
+ all_latent.append(latent)
86
+ return all_latent
87
+
88
+
89
+ @torch.no_grad()
90
+ def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
91
+ ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
92
+ return ddim_latents
93
+
94
+ def load_weights(
95
+ animation_pipeline,
96
+ # motion module
97
+ motion_module_path = "",
98
+ motion_module_lora_configs = [],
99
+ # image layers
100
+ dreambooth_model_path = "",
101
+ lora_model_path = "",
102
+ lora_alpha = 0.8,
103
+ ):
104
+ # 1.1 motion module
105
+ unet_state_dict = {}
106
+ if motion_module_path != "":
107
+ print(f"load motion module from {motion_module_path}")
108
+ motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
109
+ motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
110
+ unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
111
+
112
+ missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
113
+ assert len(unexpected) == 0
114
+ del unet_state_dict
115
+
116
+ if dreambooth_model_path != "":
117
+ print(f"load dreambooth model from {dreambooth_model_path}")
118
+ if dreambooth_model_path.endswith(".safetensors"):
119
+ dreambooth_state_dict = {}
120
+ with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
121
+ for key in f.keys():
122
+ dreambooth_state_dict[key] = f.get_tensor(key)
123
+ elif dreambooth_model_path.endswith(".ckpt"):
124
+ dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
125
+
126
+ # 1. vae
127
+ converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
128
+ animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
129
+ # 2. unet
130
+ converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
131
+ animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
132
+ # 3. text_model
133
+ animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
134
+ del dreambooth_state_dict
135
+
136
+ if lora_model_path != "":
137
+ print(f"load lora model from {lora_model_path}")
138
+ assert lora_model_path.endswith(".safetensors")
139
+ lora_state_dict = {}
140
+ with safe_open(lora_model_path, framework="pt", device="cpu") as f:
141
+ for key in f.keys():
142
+ lora_state_dict[key] = f.get_tensor(key)
143
+
144
+ animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
145
+ del lora_state_dict
146
+
147
+
148
+ for motion_module_lora_config in motion_module_lora_configs:
149
+ path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
150
+ print(f"load motion LoRA from {path}")
151
+
152
+ motion_lora_state_dict = torch.load(path, map_location="cpu")
153
+ motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
154
+
155
+ animation_pipeline = convert_motion_lora_ckpt_to_diffusers(animation_pipeline, motion_lora_state_dict, alpha)
156
+
157
+ return animation_pipeline
app.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import random
4
+
5
+ import gradio as gr
6
+ from glob import glob
7
+ from omegaconf import OmegaConf
8
+ from safetensors import safe_open
9
+
10
+ from diffusers import AutoencoderKL
11
+ from diffusers import EulerDiscreteScheduler, DDIMScheduler
12
+ from diffusers.utils.import_utils import is_xformers_available
13
+ from transformers import CLIPTextModel, CLIPTokenizer
14
+
15
+ from animatediff.models.unet import UNet3DConditionModel
16
+ from animatediff.pipelines.pipeline_animation import AnimationFreeInitPipeline
17
+ from animatediff.utils.util import save_videos_grid
18
+ from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
19
+ from diffusers.training_utils import set_seed
20
+
21
+ from animatediff.utils.freeinit_utils import get_freq_filter
22
+ from collections import namedtuple
23
+
24
+ pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5"
25
+ inference_config_path = "configs/inference/inference-v1.yaml"
26
+
27
+ css = """
28
+ .toolbutton {
29
+ margin-buttom: 0em 0em 0em 0em;
30
+ max-width: 2.5em;
31
+ min-width: 2.5em !important;
32
+ height: 2.5em;
33
+ }
34
+ """
35
+
36
+ examples = [
37
+ # 1-ToonYou
38
+ [
39
+ "toonyou_beta3.safetensors",
40
+ "mm_sd_v14.ckpt",
41
+ "(best quality, masterpiece), close up, 1girl, red clothes, sitting, elf, pond, in water, deep forest, waterfall, looking away, blurry background",
42
+ "worst quality, low quality, nsfw, logo",
43
+ 512, 512, "1566149281915957",
44
+ "butterworth", 0.25, 0.25, 3,
45
+ ["use_fp16"]
46
+ ],
47
+ # 2-Lyriel
48
+ [
49
+ "lyriel_v16.safetensors",
50
+ "mm_sd_v14.ckpt",
51
+ "hypercars cyberpunk moving, muted colors, swirling color smokes, legend, cityscape, space",
52
+ "3d, cartoon, anime, sketches, worst quality, low quality, nsfw, logo",
53
+ 512, 512, "4954488479039740",
54
+ "butterworth", 0.25, 0.25, 3,
55
+ ["use_fp16"]
56
+ ],
57
+ # 3-RCNZ
58
+ [
59
+ "rcnzCartoon3d_v10.safetensors",
60
+ "mm_sd_v14.ckpt",
61
+ "A cute raccoon playing guitar in a boat on the ocean",
62
+ "worst quality, low quality, nsfw, logo",
63
+ 512, 512, "2005563494988190",
64
+ "butterworth", 0.25, 0.25, 3,
65
+ ["use_fp16"]
66
+ ],
67
+ # 4-MajicMix
68
+ [
69
+ "majicmixRealistic_v5Preview.safetensors",
70
+ "mm_sd_v14.ckpt",
71
+ "1girl, reading book",
72
+ "bad hand, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, watermark, moles",
73
+ 512, 512, "2005563494988190",
74
+ "butterworth", 0.25, 0.25, 3,
75
+ ["use_fp16"]
76
+ ],
77
+ # # 5-RealisticVision
78
+ # [
79
+ # "realisticVisionV51_v20Novae.safetensors",
80
+ # "mm_sd_v14.ckpt",
81
+ # "A panda standing on a surfboard in the ocean in sunset.",
82
+ # "worst quality, low quality, nsfw, logo",
83
+ # 512, 512, "2005563494988190",
84
+ # "butterworth", 0.25, 0.25, 3,
85
+ # ["use_fp16"]
86
+ # ]
87
+ # 5-RealisticVision
88
+ [
89
+ "realisticVisionV51_v20Novae.safetensors",
90
+ "mm_sd_v14.ckpt",
91
+ "b&w photo of 42 y.o man in black clothes, bald, face, half body, body, high detailed skin, skin pores, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
92
+ "(semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
93
+ 512, 512, "1566149281915957",
94
+ "butterworth", 0.25, 0.25, 3,
95
+ ["use_fp16"]
96
+ ]
97
+ ]
98
+
99
+ # clean unrelated ckpts
100
+ # ckpts = [
101
+ # "realisticVisionV40_v20Novae.safetensors",
102
+ # "majicmixRealistic_v5Preview.safetensors",
103
+ # "rcnzCartoon3d_v10.safetensors",
104
+ # "lyriel_v16.safetensors",
105
+ # "toonyou_beta3.safetensors"
106
+ # ]
107
+
108
+ # for path in glob(os.path.join("models", "DreamBooth_LoRA", "*.safetensors")):
109
+ # for ckpt in ckpts:
110
+ # if path.endswith(ckpt): break
111
+ # else:
112
+ # print(f"### Cleaning {path} ...")
113
+ # os.system(f"rm -rf {path}")
114
+
115
+ # os.system(f"rm -rf {os.path.join('models', 'DreamBooth_LoRA', '*.safetensors')}")
116
+
117
+ # os.system(f"bash download_bashscripts/1-ToonYou.sh")
118
+ # os.system(f"bash download_bashscripts/2-Lyriel.sh")
119
+ # os.system(f"bash download_bashscripts/3-RcnzCartoon.sh")
120
+ # os.system(f"bash download_bashscripts/4-MajicMix.sh")
121
+ # os.system(f"bash download_bashscripts/5-RealisticVision.sh")
122
+
123
+ # clean Gradio cache
124
+ print(f"### Cleaning cached examples ...")
125
+ os.system(f"rm -rf gradio_cached_examples/")
126
+
127
+
128
+ class AnimateController:
129
+ def __init__(self):
130
+
131
+ # config dirs
132
+ self.basedir = os.getcwd()
133
+ self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
134
+ self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
135
+ self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
136
+ self.savedir = os.path.join(self.basedir, "samples")
137
+ os.makedirs(self.savedir, exist_ok=True)
138
+
139
+ self.base_model_list = []
140
+ self.motion_module_list = []
141
+ self.filter_type_list = [
142
+ "butterworth",
143
+ "gaussian",
144
+ "box",
145
+ "ideal"
146
+ ]
147
+
148
+ self.selected_base_model = None
149
+ self.selected_motion_module = None
150
+ self.selected_filter_type = None
151
+ self.set_width = None
152
+ self.set_height = None
153
+ self.set_d_s = None
154
+ self.set_d_t = None
155
+
156
+ self.refresh_motion_module()
157
+ self.refresh_personalized_model()
158
+
159
+ # config models
160
+ self.inference_config = OmegaConf.load(inference_config_path)
161
+
162
+ self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
163
+ self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
164
+ self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
165
+ self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
166
+
167
+ self.freq_filter = None
168
+
169
+ self.update_base_model(self.base_model_list[-2])
170
+ self.update_motion_module(self.motion_module_list[0])
171
+ self.update_filter(512, 512, self.filter_type_list[0], 0.25, 0.25)
172
+
173
+
174
+ def refresh_motion_module(self):
175
+ motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
176
+ self.motion_module_list = sorted([os.path.basename(p) for p in motion_module_list])
177
+
178
+ def refresh_personalized_model(self):
179
+ base_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
180
+ self.base_model_list = sorted([os.path.basename(p) for p in base_model_list])
181
+
182
+
183
+ def update_base_model(self, base_model_dropdown):
184
+ self.selected_base_model = base_model_dropdown
185
+
186
+ base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
187
+ base_model_state_dict = {}
188
+ with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
189
+ for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key)
190
+
191
+ converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
192
+ self.vae.load_state_dict(converted_vae_checkpoint)
193
+
194
+ converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
195
+ self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
196
+
197
+ self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
198
+ return gr.Dropdown.update()
199
+
200
+ def update_motion_module(self, motion_module_dropdown):
201
+ self.selected_motion_module = motion_module_dropdown
202
+
203
+ motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
204
+ motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
205
+ _, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
206
+ assert len(unexpected) == 0
207
+ return gr.Dropdown.update()
208
+
209
+ # def update_filter(self, shape, method, n, d_s, d_t):
210
+ def update_filter(self, width_slider, height_slider, filter_type_dropdown, d_s_slider, d_t_slider):
211
+ self.set_width = width_slider
212
+ self.set_height = height_slider
213
+ self.selected_filter_type = filter_type_dropdown
214
+ self.set_d_s = d_s_slider
215
+ self.set_d_t = d_t_slider
216
+
217
+ vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
218
+
219
+ shape = [1, 4, 16, self.set_width//vae_scale_factor, self.set_height//vae_scale_factor]
220
+ self.freq_filter = get_freq_filter(
221
+ shape,
222
+ device="cuda",
223
+ filter_type=self.selected_filter_type,
224
+ n=4,
225
+ d_s=self.set_d_s,
226
+ d_t=self.set_d_t
227
+ )
228
+
229
+ def animate(
230
+ self,
231
+ base_model_dropdown,
232
+ motion_module_dropdown,
233
+ prompt_textbox,
234
+ negative_prompt_textbox,
235
+ width_slider,
236
+ height_slider,
237
+ seed_textbox,
238
+ # freeinit params
239
+ filter_type_dropdown,
240
+ d_s_slider,
241
+ d_t_slider,
242
+ num_iters_slider,
243
+ # speed up
244
+ speed_up_options
245
+ ):
246
+ # set global seed
247
+ set_seed(42)
248
+
249
+ d_s = float(d_s_slider)
250
+ d_t = float(d_t_slider)
251
+ num_iters = int(num_iters_slider)
252
+
253
+
254
+ if self.selected_base_model != base_model_dropdown: self.update_base_model(base_model_dropdown)
255
+ if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown)
256
+
257
+ self.set_width = width_slider
258
+ self.set_height = height_slider
259
+ self.selected_filter_type = filter_type_dropdown
260
+ self.set_d_s = d_s
261
+ self.set_d_t = d_t
262
+ if self.set_width != width_slider or self.set_height != height_slider or self.selected_filter_type != filter_type_dropdown or self.set_d_s != d_s or self.set_d_t != d_t:
263
+ self.update_filter(width_slider, height_slider, filter_type_dropdown, d_s, d_t)
264
+
265
+ if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
266
+
267
+ pipeline = AnimationFreeInitPipeline(
268
+ vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
269
+ scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
270
+ ).to("cuda")
271
+
272
+ # (freeinit) initialize frequency filter for noise reinitialization -------------
273
+ pipeline.freq_filter = self.freq_filter
274
+ # -------------------------------------------------------------------------------
275
+
276
+
277
+ if int(seed_textbox) > 0: seed = int(seed_textbox)
278
+ else: seed = random.randint(1, 1e16)
279
+ torch.manual_seed(int(seed))
280
+
281
+ assert seed == torch.initial_seed()
282
+ print(f"### seed: {seed}")
283
+
284
+ generator = torch.Generator(device="cuda")
285
+ generator.manual_seed(seed)
286
+
287
+ sample_output = pipeline(
288
+ prompt_textbox,
289
+ negative_prompt = negative_prompt_textbox,
290
+ num_inference_steps = 25,
291
+ guidance_scale = 7.5,
292
+ width = width_slider,
293
+ height = height_slider,
294
+ video_length = 16,
295
+ num_iters = num_iters,
296
+ use_fast_sampling = True if "use_coarse_to_fine_sampling" in speed_up_options else False,
297
+ save_intermediate = False,
298
+ return_orig = True,
299
+ use_fp16 = True if "use_fp16" in speed_up_options else False
300
+ )
301
+ orig_sample = sample_output.orig_videos
302
+ sample = sample_output.videos
303
+
304
+ save_sample_path = os.path.join(self.savedir, f"sample.mp4")
305
+ save_videos_grid(sample, save_sample_path)
306
+
307
+ save_orig_sample_path = os.path.join(self.savedir, f"sample_orig.mp4")
308
+ save_videos_grid(orig_sample, save_orig_sample_path)
309
+
310
+ # save_compare_path = os.path.join(self.savedir, f"compare.mp4")
311
+ # save_videos_grid(torch.concat([orig_sample, sample]), save_compare_path)
312
+
313
+ json_config = {
314
+ "prompt": prompt_textbox,
315
+ "n_prompt": negative_prompt_textbox,
316
+ "width": width_slider,
317
+ "height": height_slider,
318
+ "seed": seed,
319
+ "base_model": base_model_dropdown,
320
+ "motion_module": motion_module_dropdown,
321
+ "filter_type": filter_type_dropdown,
322
+ "d_s": d_s,
323
+ "d_t": d_t,
324
+ "num_iters": num_iters,
325
+ "use_fp16": True if "use_fp16" in speed_up_options else False,
326
+ "use_coarse_to_fine_sampling": True if "use_coarse_to_fine_sampling" in speed_up_options else False
327
+ }
328
+
329
+ # return gr.Video.update(value=save_compare_path), gr.Json.update(value=json_config)
330
+ # return gr.Video.update(value=save_orig_sample_path), gr.Video.update(value=save_sample_path), gr.Video.update(value=save_compare_path), gr.Json.update(value=json_config)
331
+ return gr.Video.update(value=save_orig_sample_path), gr.Video.update(value=save_sample_path), gr.Json.update(value=json_config)
332
+
333
+
334
+ controller = AnimateController()
335
+
336
+
337
+ def ui():
338
+ with gr.Blocks(css=css) as demo:
339
+ # gr.Markdown('# FreeInit')
340
+ gr.Markdown(
341
+ """
342
+ <div align="center">
343
+ <h1>FreeInit</h1>
344
+ </div>
345
+ """
346
+ )
347
+ gr.Markdown(
348
+ """
349
+ <p align="center">
350
+ <a title="Project Page" href="https://tianxingwu.github.io/pages/FreeInit/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
351
+ <img src="https://img.shields.io/badge/Project-Website-5B7493?logo=googlechrome&logoColor=5B7493">
352
+ </a>
353
+ <a title="arXiv" href="https://arxiv.org/abs/2312.07537" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
354
+ <img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=b31b1b">
355
+ </a>
356
+ <a title="GitHub" href="https://github.com/TianxingWu/FreeInit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
357
+ <img src="https://img.shields.io/github/stars/TianxingWu/FreeInit?label=GitHub%20%E2%98%85&&logo=github" alt="badge-github-stars">
358
+ </a>
359
+ <a title="Video" href="https://youtu.be/lS5IYbAqriI" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
360
+ <img src="https://img.shields.io/badge/YouTube-Video-red?logo=youtube&logoColor=red">
361
+ </a>
362
+ </p>
363
+ """
364
+ # <a title="Visitor" href="https://hits.seeyoufarm.com" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
365
+ # <img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FTianxingWu%2FFreeInit&count_bg=%23678F74&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false">
366
+ # </a>
367
+ )
368
+ gr.Markdown(
369
+ """
370
+ Official Gradio Demo for ***FreeInit: Bridging Initialization Gap in Video Diffusion Models***.<br>
371
+ FreeInit improves time consistency of diffusion-based video generation at inference time.
372
+ In this demo, we apply FreeInit on [AnimateDiff v1](https://github.com/guoyww/AnimateDiff) as an example.<br>
373
+ """
374
+ )
375
+
376
+ with gr.Row():
377
+ with gr.Column():
378
+ # gr.Markdown(
379
+ # """
380
+ # ### Usage
381
+ # 1. Select customized model and motion module in `Model Settings`.
382
+ # 3. Set `FreeInit Settings`.
383
+ # 3. Provide `Prompt` and `Negative Prompt` for your selected model. You can refer to each model's webpage on CivitAI to learn how to write prompts for them:
384
+ # - [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
385
+ # - [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel)
386
+ # - [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009)
387
+ # - [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068)
388
+ # - [`realisticVisionV20_v20.safetensors`](https://civitai.com/models/4201?modelVersionId=29460)
389
+ # 4. Click `Generate`.
390
+ # """
391
+ # )
392
+ prompt_textbox = gr.Textbox( label="Prompt", lines=3, placeholder="Enter your prompt here")
393
+ negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
394
+
395
+ gr.Markdown(
396
+ """
397
+ *Prompt Tips:*
398
+
399
+ For each personalized model in `Model Settings`, you can refer to their webpage on CivitAI to learn how to write good prompts for them:
400
+ - [`realisticVisionV20_v20.safetensors`](https://civitai.com/models/4201?modelVersionId=29460)
401
+ - [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
402
+ - [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel)
403
+ - [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009)
404
+ - [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068)
405
+ """
406
+ )
407
+
408
+ with gr.Accordion("Model Settings", open=False):
409
+ gr.Markdown(
410
+ """
411
+ Select personalized model and motion module for AnimateDiff.
412
+ """
413
+ )
414
+ base_model_dropdown = gr.Dropdown( label="Base DreamBooth Model", choices=controller.base_model_list, value=controller.base_model_list[-2], interactive=True,
415
+ info="Select personalized text-to-image model from community")
416
+ motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True,
417
+ info="Select motion module. Recommend mm_sd_v14.ckpt for larger movements.")
418
+
419
+ base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
420
+ motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
421
+
422
+ with gr.Accordion("FreeInit Params", open=False):
423
+ gr.Markdown(
424
+ """
425
+ Adjust to control the smoothness.
426
+ """
427
+ )
428
+ filter_type_dropdown = gr.Dropdown( label="Filter Type", choices=controller.filter_type_list, value=controller.filter_type_list[0], interactive=True,
429
+ info="Default as Butterworth. To fix large inconsistencies, consider using Gaussian.")
430
+ d_s_slider = gr.Slider( label="d_s", value=0.25, minimum=0, maximum=1, step=0.125,
431
+ info="Stop frequency for spatial dimensions (0.0-1.0)")
432
+ d_t_slider = gr.Slider( label="d_t", value=0.25, minimum=0, maximum=1, step=0.125,
433
+ info="Stop frequency for temporal dimension (0.0-1.0)")
434
+ # num_iters_textbox = gr.Textbox( label="FreeInit Iterations", value=3, info="Sould be integer >1, larger value leads to smoother results)")
435
+ num_iters_slider = gr.Slider( label="FreeInit Iterations", value=3, minimum=2, maximum=5, step=1,
436
+ info="Larger value leads to smoother results & longer inference time.")
437
+
438
+ with gr.Accordion("Advance", open=False):
439
+ with gr.Row():
440
+ width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
441
+ height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
442
+ with gr.Row():
443
+ seed_textbox = gr.Textbox( label="Seed", value=1566149281915957)
444
+ seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
445
+ seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
446
+ with gr.Row():
447
+ speed_up_options = gr.CheckboxGroup(
448
+ ["use_fp16", "use_coarse_to_fine_sampling"],
449
+ label="Speed-Up Options",
450
+ value=["use_fp16"]
451
+ )
452
+
453
+
454
+ generate_button = gr.Button( value="Generate", variant='primary' )
455
+
456
+
457
+ # with gr.Column():
458
+ # result_video = gr.Video( label="Generated Animation", interactive=False )
459
+ # json_config = gr.Json( label="Config", value=None )
460
+ with gr.Column():
461
+ with gr.Row():
462
+ orig_video = gr.Video( label="AnimateDiff", interactive=False )
463
+ freeinit_video = gr.Video( label="AnimateDiff + FreeInit", interactive=False )
464
+ # with gr.Row():
465
+ # compare_video = gr.Video( label="Compare", interactive=False )
466
+ with gr.Row():
467
+ json_config = gr.Json( label="Config", value=None )
468
+
469
+ inputs = [base_model_dropdown, motion_module_dropdown,
470
+ prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox,
471
+ filter_type_dropdown, d_s_slider, d_t_slider, num_iters_slider,
472
+ speed_up_options
473
+ ]
474
+ # outputs = [result_video, json_config]
475
+ # outputs = [orig_video, freeinit_video, compare_video, json_config]
476
+ outputs = [orig_video, freeinit_video, json_config]
477
+
478
+ generate_button.click( fn=controller.animate, inputs=inputs, outputs=outputs )
479
+
480
+ gr.Examples( fn=controller.animate, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True)
481
+
482
+ return demo
483
+
484
+
485
+ if __name__ == "__main__":
486
+ demo = ui()
487
+ demo.queue(max_size=20)
488
+ demo.launch(share=True)
configs/inference/inference-v1.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ unet_additional_kwargs:
2
+ unet_use_cross_frame_attention: false
3
+ unet_use_temporal_attention: false
4
+ use_motion_module: true
5
+ motion_module_resolutions:
6
+ - 1
7
+ - 2
8
+ - 4
9
+ - 8
10
+ motion_module_mid_block: false
11
+ motion_module_decoder_only: false
12
+ motion_module_type: Vanilla
13
+ motion_module_kwargs:
14
+ num_attention_heads: 8
15
+ num_transformer_block: 1
16
+ attention_block_types:
17
+ - Temporal_Self
18
+ - Temporal_Self
19
+ temporal_position_encoding: true
20
+ temporal_position_encoding_max_len: 24
21
+ temporal_attention_dim_div: 1
22
+
23
+ noise_scheduler_kwargs:
24
+ beta_start: 0.00085
25
+ beta_end: 0.012
26
+ beta_schedule: "linear"
configs/inference/inference-v2.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ unet_additional_kwargs:
2
+ use_inflated_groupnorm: true
3
+ unet_use_cross_frame_attention: false
4
+ unet_use_temporal_attention: false
5
+ use_motion_module: true
6
+ motion_module_resolutions:
7
+ - 1
8
+ - 2
9
+ - 4
10
+ - 8
11
+ motion_module_mid_block: true
12
+ motion_module_decoder_only: false
13
+ motion_module_type: Vanilla
14
+ motion_module_kwargs:
15
+ num_attention_heads: 8
16
+ num_transformer_block: 1
17
+ attention_block_types:
18
+ - Temporal_Self
19
+ - Temporal_Self
20
+ temporal_position_encoding: true
21
+ temporal_position_encoding_max_len: 32
22
+ temporal_attention_dim_div: 1
23
+
24
+ noise_scheduler_kwargs:
25
+ beta_start: 0.00085
26
+ beta_end: 0.012
27
+ beta_schedule: "linear"
configs/prompts/1-ToonYou.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ToonYou:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/toonyou_beta3.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [10788741199826055526, 6520604954829636163, 6519455744612555650, 16372571278361863751]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress"
15
+ - "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes,"
16
+ - "best quality, masterpiece, 1boy, formal, abstract, looking at viewer, masculine, marble pattern"
17
+ - "best quality, masterpiece, 1girl, cloudy sky, dandelion, contrapposto, alternate hairstyle,"
18
+
19
+ n_prompt:
20
+ - ""
21
+ - "badhandv4,easynegative,ng_deepnegative_v1_75t,verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth"
22
+ - ""
23
+ - ""
configs/prompts/2-Lyriel.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Lyriel:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/lyriel_v16.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [10917152860782582783, 6399018107401806238, 15875751942533906793, 6653196880059936551]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "dark shot, epic realistic, portrait of halo, sunglasses, blue eyes, tartan scarf, white hair by atey ghailan, by greg rutkowski, by greg tocchini, by james gilleard, by joe fenton, by kaethe butcher, gradient yellow, black, brown and magenta color scheme, grunge aesthetic!!! graffiti tag wall background, art by greg rutkowski and artgerm, soft cinematic light, adobe lightroom, photolab, hdr, intricate, highly detailed, depth of field, faded, neutral colors, hdr, muted colors, hyperdetailed, artstation, cinematic, warm lights, dramatic light, intricate details, complex background, rutkowski, teal and orange"
15
+ - "A forbidden castle high up in the mountains, pixel art, intricate details2, hdr, intricate details, hyperdetailed5, natural skin texture, hyperrealism, soft light, sharp, game art, key visual, surreal"
16
+ - "dark theme, medieval portrait of a man sharp features, grim, cold stare, dark colors, Volumetric lighting, baroque oil painting by Greg Rutkowski, Artgerm, WLOP, Alphonse Mucha dynamic lighting hyperdetailed intricately detailed, hdr, muted colors, complex background, hyperrealism, hyperdetailed, amandine van ray"
17
+ - "As I have gone alone in there and with my treasures bold, I can keep my secret where and hint of riches new and old. Begin it where warm waters halt and take it in a canyon down, not far but too far to walk, put in below the home of brown."
18
+
19
+ n_prompt:
20
+ - "3d, cartoon, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, young, loli, elf, 3d, illustration"
21
+ - "3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular"
22
+ - "dof, grayscale, black and white, bw, 3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular,badhandsv5-neg, By bad artist -neg 1, monochrome"
23
+ - "holding an item, cowboy, hat, cartoon, 3d, disfigured, bad art, deformed,extra limbs,close up,b&w, wierd colors, blurry, duplicate, morbid, mutilated, [out of frame], extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, out of frame, ugly, extra limbs, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, Photoshop, video game, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, 3d render"
configs/prompts/3-RcnzCartoon.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RcnzCartoon:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/rcnzCartoon3d_v10.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [16931037867122267877, 2094308009433392066, 4292543217695451092, 15572665120852309890]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "Jane Eyre with headphones, natural skin texture,4mm,k textures, soft cinematic light, adobe lightroom, photolab, hdr, intricate, elegant, highly detailed, sharp focus, cinematic look, soothing tones, insane details, intricate details, hyperdetailed, low contrast, soft cinematic light, dim colors, exposure blend, hdr, faded"
15
+ - "close up Portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal [rust], elegant, sharp focus, photo by greg rutkowski, soft lighting, vibrant colors, masterpiece, streets, detailed face"
16
+ - "absurdres, photorealistic, masterpiece, a 30 year old man with gold framed, aviator reading glasses and a black hooded jacket and a beard, professional photo, a character portrait, altermodern, detailed eyes, detailed lips, detailed face, grey eyes"
17
+ - "a golden labrador, warm vibrant colours, natural lighting, dappled lighting, diffused lighting, absurdres, highres,k, uhd, hdr, rtx, unreal, octane render, RAW photo, photorealistic, global illumination, subsurface scattering"
18
+
19
+ n_prompt:
20
+ - "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"
21
+ - "nude, cross eyed, tongue, open mouth, inside, 3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, red eyes, muscular"
22
+ - "easynegative, cartoon, anime, sketches, necklace, earrings worst quality, low quality, normal quality, bad anatomy, bad hands, shiny skin, error, missing fingers, extra digit, fewer digits, jpeg artifacts, signature, watermark, username, blurry, chubby, anorectic, bad eyes, old, wrinkled skin, red skin, photograph By bad artist -neg, big eyes, muscular face,"
23
+ - "beard, EasyNegative, lowres, chromatic aberration, depth of field, motion blur, blurry, bokeh, bad quality, worst quality, multiple arms, badhand"
configs/prompts/4-MajicMix.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MajicMix:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/majicmixRealistic_v5Preview.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [1572448948722921032, 1099474677988590681, 6488833139725635347, 18339859844376517918]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "1girl, offshoulder, light smile, shiny skin best quality, masterpiece, photorealistic"
15
+ - "best quality, masterpiece, photorealistic, 1boy, 50 years old beard, dramatic lighting"
16
+ - "best quality, masterpiece, photorealistic, 1girl, light smile, shirt with collars, waist up, dramatic lighting, from below"
17
+ - "male, man, beard, bodybuilder, skinhead,cold face, tough guy, cowboyshot, tattoo, french windows, luxury hotel masterpiece, best quality, photorealistic"
18
+
19
+ n_prompt:
20
+ - "ng_deepnegative_v1_75t, badhandv4, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, watermark, moles"
21
+ - "nsfw, ng_deepnegative_v1_75t,badhandv4, worst quality, low quality, normal quality, lowres,watermark, monochrome"
22
+ - "nsfw, ng_deepnegative_v1_75t,badhandv4, worst quality, low quality, normal quality, lowres,watermark, monochrome"
23
+ - "nude, nsfw, ng_deepnegative_v1_75t, badhandv4, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, monochrome, grayscale watermark, moles, people"
configs/prompts/5-RealisticVision.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RealisticVision:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [5658137986800322009, 12099779162349365895, 10499524853910852697, 16768009035333711932]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "b&w photo of 42 y.o man in black clothes, bald, face, half body, body, high detailed skin, skin pores, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
15
+ - "close up photo of a rabbit, forest, haze, halation, bloom, dramatic atmosphere, centred, rule of thirds, 200mm 1.4f macro shot"
16
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
17
+ - "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"
18
+
19
+ n_prompt:
20
+ - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
21
+ - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
22
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
23
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, art, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
configs/prompts/6-Tusun.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tusun:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/moonfilm_reality20.safetensors"
7
+ lora_model_path: "models/DreamBooth_LoRA/TUSUN.safetensors"
8
+ lora_alpha: 0.6
9
+
10
+ seed: [10154078483724687116, 2664393535095473805, 4231566096207622938, 1713349740448094493]
11
+ steps: 25
12
+ guidance_scale: 7.5
13
+
14
+ prompt:
15
+ - "tusuncub with its mouth open, blurry, open mouth, fangs, photo background, looking at viewer, tongue, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing"
16
+ - "cute tusun with a blurry background, black background, simple background, signature, face, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing"
17
+ - "cut tusuncub walking in the snow, blurry, looking at viewer, depth of field, blurry background, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing"
18
+ - "character design, cyberpunk tusun kitten wearing astronaut suit, sci-fic, realistic eye color and details, fluffy, big head, science fiction, communist ideology, Cyborg, fantasy, intense angle, soft lighting, photograph, 4k, hyper detailed, portrait wallpaper, realistic, photo-realistic, DSLR, 24 Megapixels, Full Frame, vibrant details, octane render, finely detail, best quality, incredibly absurdres, robotic parts, rim light, vibrant details, luxurious cyberpunk, hyperrealistic, cable electric wires, microchip, full body"
19
+
20
+ n_prompt:
21
+ - "worst quality, low quality, deformed, distorted, disfigured, bad eyes, bad anatomy, disconnected limbs, wrong body proportions, low quality, worst quality, text, watermark, signatre, logo, illustration, painting, cartoons, ugly, easy_negative"
configs/prompts/7-FilmVelvia.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FilmVelvia:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/majicmixRealistic_v4.safetensors"
7
+ lora_model_path: "models/DreamBooth_LoRA/FilmVelvia2.safetensors"
8
+ lora_alpha: 0.6
9
+
10
+ seed: [358675358833372813, 3519455280971923743, 11684545350557985081, 8696855302100399877]
11
+ steps: 25
12
+ guidance_scale: 7.5
13
+
14
+ prompt:
15
+ - "a woman standing on the side of a road at night,girl, long hair, motor vehicle, car, looking at viewer, ground vehicle, night, hands in pockets, blurry background, coat, black hair, parted lips, bokeh, jacket, brown hair, outdoors, red lips, upper body, artist name"
16
+ - ", dark shot,0mm, portrait quality of a arab man worker,boy, wasteland that stands out vividly against the background of the desert, barren landscape, closeup, moles skin, soft light, sharp, exposure blend, medium shot, bokeh, hdr, high contrast, cinematic, teal and orange5, muted colors, dim colors, soothing tones, low saturation, hyperdetailed, noir"
17
+ - "fashion photography portrait of 1girl, offshoulder, fluffy short hair, soft light, rim light, beautiful shadow, low key, photorealistic, raw photo, natural skin texture, realistic eye and face details, hyperrealism, ultra high res, 4K, Best quality, masterpiece, necklace, cleavage, in the dark"
18
+ - "In this lighthearted portrait, a woman is dressed as a fierce warrior, armed with an arsenal of paintbrushes and palette knives. Her war paint is composed of thick, vibrant strokes of color, and her armor is made of paint tubes and paint-splattered canvases. She stands victoriously atop a mountain of conquered blank canvases, with a beautiful, colorful landscape behind her, symbolizing the power of art and creativity. bust Portrait, close-up, Bright and transparent scene lighting, "
19
+
20
+ n_prompt:
21
+ - "cartoon, anime, sketches,worst quality, low quality, deformed, distorted, disfigured, bad eyes, wrong lips, weird mouth, bad teeth, mutated hands and fingers, bad anatomy, wrong anatomy, amputation, extra limb, missing limb, floating limbs, disconnected limbs, mutation, ugly, disgusting, bad_pictures, negative_hand-neg"
22
+ - "cartoon, anime, sketches,worst quality, low quality, deformed, distorted, disfigured, bad eyes, wrong lips, weird mouth, bad teeth, mutated hands and fingers, bad anatomy, wrong anatomy, amputation, extra limb, missing limb, floating limbs, disconnected limbs, mutation, ugly, disgusting, bad_pictures, negative_hand-neg"
23
+ - "wrong white balance, dark, cartoon, anime, sketches,worst quality, low quality, deformed, distorted, disfigured, bad eyes, wrong lips, weird mouth, bad teeth, mutated hands and fingers, bad anatomy, wrong anatomy, amputation, extra limb, missing limb, floating limbs, disconnected limbs, mutation, ugly, disgusting, bad_pictures, negative_hand-neg"
24
+ - "wrong white balance, dark, cartoon, anime, sketches,worst quality, low quality, deformed, distorted, disfigured, bad eyes, wrong lips, weird mouth, bad teeth, mutated hands and fingers, bad anatomy, wrong anatomy, amputation, extra limb, missing limb, floating limbs, disconnected limbs, mutation, ugly, disgusting, bad_pictures, negative_hand-neg"
configs/prompts/8-GhibliBackground.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GhibliBackground:
2
+ motion_module:
3
+ - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "models/Motion_Module/mm_sd_v15.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/CounterfeitV30_25.safetensors"
7
+ lora_model_path: "models/DreamBooth_LoRA/lora_Ghibli_n3.safetensors"
8
+ lora_alpha: 1.0
9
+
10
+ seed: [8775748474469046618, 5893874876080607656, 11911465742147695752, 12437784838692000640]
11
+ steps: 25
12
+ guidance_scale: 7.5
13
+
14
+ prompt:
15
+ - "best quality,single build,architecture, blue_sky, building,cloudy_sky, day, fantasy, fence, field, house, build,architecture,landscape, moss, outdoors, overgrown, path, river, road, rock, scenery, sky, sword, tower, tree, waterfall"
16
+ - "black_border, building, city, day, fantasy, ice, landscape, letterboxed, mountain, ocean, outdoors, planet, scenery, ship, snow, snowing, water, watercraft, waterfall, winter"
17
+ - ",mysterious sea area, fantasy,build,concept"
18
+ - "Tomb Raider,Scenography,Old building"
19
+
20
+ n_prompt:
21
+ - "easynegative,bad_construction,bad_structure,bad_wail,bad_windows,blurry,cloned_window,cropped,deformed,disfigured,error,extra_windows,extra_chimney,extra_door,extra_structure,extra_frame,fewer_digits,fused_structure,gross_proportions,jpeg_artifacts,long_roof,low_quality,structure_limbs,missing_windows,missing_doors,missing_roofs,mutated_structure,mutation,normal_quality,out_of_frame,owres,poorly_drawn_structure,poorly_drawn_house,signature,text,too_many_windows,ugly,username,uta,watermark,worst_quality"
configs/prompts/freeinit_examples/RcnzCartoon_v2.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RealisticVision:
2
+ inference_config: "configs/inference/inference-v2.yaml"
3
+ motion_module:
4
+ # - "models/Motion_Module/mm_sd_v14.ckpt"
5
+ - "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/Motion_Module/mm_sd_v15_v2.ckpt"
6
+
7
+ # dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
8
+ dreambooth_path: "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/DreamBooth_LoRA/rcnzCartoon3d_v10.safetensors"
9
+ lora_model_path: ""
10
+
11
+ seed: [849, 502, 1334]
12
+ steps: 25
13
+ guidance_scale: 7.5
14
+
15
+ filter_params:
16
+ method: 'butterworth'
17
+ n: 4
18
+ d_s: 0.25
19
+ d_t: 0.25
20
+
21
+ # filter_params:
22
+ # method: 'gaussian'
23
+ # d_s: 0.25
24
+ # d_t: 0.25
25
+
26
+ prompt:
27
+ - "Gwen Stacy reading a book"
28
+ - "A cute raccoon playing guitar in a boat on the ocean"
29
+
30
+ n_prompt:
31
+ - ""
32
+ - ""
33
+
configs/prompts/freeinit_examples/RealisticVision_v1.yaml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RealisticVision:
2
+ motion_module:
3
+ # - "models/Motion_Module/mm_sd_v14.ckpt"
4
+ - "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/Motion_Module/mm_sd_v14.ckpt"
5
+
6
+ # dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
7
+ dreambooth_path: "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
8
+ lora_model_path: ""
9
+
10
+ seed: [502, 5206]
11
+ steps: 25
12
+ guidance_scale: 7.5
13
+
14
+ # filter_params:
15
+ # method: 'butterworth'
16
+ # n: 4
17
+ # d_s: 0.25
18
+ # d_t: 0.25
19
+
20
+ filter_params:
21
+ method: 'gaussian'
22
+ d_s: 0.25
23
+ d_t: 0.25
24
+
25
+ prompt:
26
+ - "A cute raccoon playing guitar in a boat on the ocean."
27
+ - "A panda standing on a surfboard in the ocean in sunset."
28
+
29
+ n_prompt:
30
+ - ""
31
+ - ""
32
+
configs/prompts/freeinit_examples/RealisticVision_v2.yaml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RealisticVision:
2
+ inference_config: "configs/inference/inference-v2.yaml"
3
+ motion_module:
4
+ # - "models/Motion_Module/mm_sd_v14.ckpt"
5
+ - "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/Motion_Module/mm_sd_v15_v2.ckpt"
6
+
7
+ # dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
8
+ dreambooth_path: "/mnt/petrelfs/sichenyang.p/code/diffsuion/git_code/AnimateDiff/AnimateDiff/models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
9
+ lora_model_path: ""
10
+
11
+ seed: [9620, 913, 6840, 1334]
12
+ steps: 25
13
+ guidance_scale: 7.5
14
+
15
+ filter_params:
16
+ method: 'butterworth'
17
+ n: 4
18
+ d_s: 0.25
19
+ d_t: 0.25
20
+
21
+ # filter_params:
22
+ # method: 'gaussian'
23
+ # d_s: 0.25
24
+ # d_t: 0.25
25
+
26
+ prompt:
27
+ - "A panda cooking in the kitchen"
28
+ - "A cat wearing sunglasses and working as a lifeguard at a pool."
29
+ - "A confused panda in calculus class"
30
+ - "A robot DJ is playing the turntable, in heavy raining futuristic tokyo rooftop cyberpunk night, sci-fi, fantasy"
31
+
32
+ n_prompt:
33
+ - ""
34
+ - ""
35
+ - ""
36
+ - ""
37
+
configs/prompts/v2/5-RealisticVision-MotionLoRA.yaml ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ZoomIn:
2
+ inference_config: "configs/inference/inference-v2.yaml"
3
+ motion_module:
4
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
5
+
6
+ motion_module_lora_configs:
7
+ - path: "models/MotionLoRA/v2_lora_ZoomIn.ckpt"
8
+ alpha: 1.0
9
+
10
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
11
+ lora_model_path: ""
12
+
13
+ seed: 45987230
14
+ steps: 25
15
+ guidance_scale: 7.5
16
+
17
+ prompt:
18
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
19
+
20
+ n_prompt:
21
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
22
+
23
+
24
+
25
+ ZoomOut:
26
+ inference_config: "configs/inference/inference-v2.yaml"
27
+ motion_module:
28
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
29
+
30
+ motion_module_lora_configs:
31
+ - path: "models/MotionLoRA/v2_lora_ZoomOut.ckpt"
32
+ alpha: 1.0
33
+
34
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
35
+ lora_model_path: ""
36
+
37
+ seed: 45987230
38
+ steps: 25
39
+ guidance_scale: 7.5
40
+
41
+ prompt:
42
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
43
+
44
+ n_prompt:
45
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
46
+
47
+
48
+
49
+ PanLeft:
50
+ inference_config: "configs/inference/inference-v2.yaml"
51
+ motion_module:
52
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
53
+
54
+ motion_module_lora_configs:
55
+ - path: "models/MotionLoRA/v2_lora_PanLeft.ckpt"
56
+ alpha: 1.0
57
+
58
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
59
+ lora_model_path: ""
60
+
61
+ seed: 45987230
62
+ steps: 25
63
+ guidance_scale: 7.5
64
+
65
+ prompt:
66
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
67
+
68
+ n_prompt:
69
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
70
+
71
+
72
+
73
+ PanRight:
74
+ inference_config: "configs/inference/inference-v2.yaml"
75
+ motion_module:
76
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
77
+
78
+ motion_module_lora_configs:
79
+ - path: "models/MotionLoRA/v2_lora_PanRight.ckpt"
80
+ alpha: 1.0
81
+
82
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
83
+ lora_model_path: ""
84
+
85
+ seed: 45987230
86
+ steps: 25
87
+ guidance_scale: 7.5
88
+
89
+ prompt:
90
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
91
+
92
+ n_prompt:
93
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
94
+
95
+
96
+
97
+ TiltUp:
98
+ inference_config: "configs/inference/inference-v2.yaml"
99
+ motion_module:
100
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
101
+
102
+ motion_module_lora_configs:
103
+ - path: "models/MotionLoRA/v2_lora_TiltUp.ckpt"
104
+ alpha: 1.0
105
+
106
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
107
+ lora_model_path: ""
108
+
109
+ seed: 45987230
110
+ steps: 25
111
+ guidance_scale: 7.5
112
+
113
+ prompt:
114
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
115
+
116
+ n_prompt:
117
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
118
+
119
+
120
+
121
+ TiltDown:
122
+ inference_config: "configs/inference/inference-v2.yaml"
123
+ motion_module:
124
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
125
+
126
+ motion_module_lora_configs:
127
+ - path: "models/MotionLoRA/v2_lora_TiltDown.ckpt"
128
+ alpha: 1.0
129
+
130
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
131
+ lora_model_path: ""
132
+
133
+ seed: 45987230
134
+ steps: 25
135
+ guidance_scale: 7.5
136
+
137
+ prompt:
138
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
139
+
140
+ n_prompt:
141
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
142
+
143
+
144
+
145
+ RollingAnticlockwise:
146
+ inference_config: "configs/inference/inference-v2.yaml"
147
+ motion_module:
148
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
149
+
150
+ motion_module_lora_configs:
151
+ - path: "models/MotionLoRA/v2_lora_RollingAnticlockwise.ckpt"
152
+ alpha: 1.0
153
+
154
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
155
+ lora_model_path: ""
156
+
157
+ seed: 45987230
158
+ steps: 25
159
+ guidance_scale: 7.5
160
+
161
+ prompt:
162
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
163
+
164
+ n_prompt:
165
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
166
+
167
+
168
+
169
+ RollingClockwise:
170
+ inference_config: "configs/inference/inference-v2.yaml"
171
+ motion_module:
172
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
173
+
174
+ motion_module_lora_configs:
175
+ - path: "models/MotionLoRA/v2_lora_RollingClockwise.ckpt"
176
+ alpha: 1.0
177
+
178
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
179
+ lora_model_path: ""
180
+
181
+ seed: 45987230
182
+ steps: 25
183
+ guidance_scale: 7.5
184
+
185
+ prompt:
186
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
187
+
188
+ n_prompt:
189
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
configs/prompts/v2/5-RealisticVision.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RealisticVision:
2
+ inference_config: "configs/inference/inference-v2.yaml"
3
+ motion_module:
4
+ - "models/Motion_Module/mm_sd_v15_v2.ckpt"
5
+
6
+ dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV20_v20.safetensors"
7
+ lora_model_path: ""
8
+
9
+ seed: [13100322578370451493, 14752961627088720670, 9329399085567825781, 16987697414827649302]
10
+ steps: 25
11
+ guidance_scale: 7.5
12
+
13
+ prompt:
14
+ - "b&w photo of 42 y.o man in black clothes, bald, face, half body, body, high detailed skin, skin pores, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
15
+ - "close up photo of a rabbit, forest, haze, halation, bloom, dramatic atmosphere, centred, rule of thirds, 200mm 1.4f macro shot"
16
+ - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
17
+ - "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"
18
+
19
+ n_prompt:
20
+ - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
21
+ - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
22
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
23
+ - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, art, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
models/DreamBooth_LoRA/Put personalized T2I checkpoints here.txt ADDED
File without changes
models/MotionLoRA/Put MotionLoRA checkpoints here.txt ADDED
File without changes
models/Motion_Module/Put motion module checkpoints here.txt ADDED
File without changes
models/StableDiffusion/Put diffusers stable-diffusion-v1-5 repo here.txt ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==1.13.1
2
+ torchvision==0.14.1
3
+ torchaudio==0.13.1
4
+ diffusers==0.11.1
5
+ transformers==4.25.1
6
+ xformers==0.0.16
7
+ imageio==2.27.0
8
+ gdown
9
+ einops
10
+ omegaconf
11
+ safetensors
12
+ gradio
13
+ imageio[ffmpeg]
14
+ imageio[pyav]
15
+ accelerate