File size: 1,995 Bytes
0ffe84e
8afd49e
 
 
a231612
0ffe84e
4af3178
0ffe84e
 
2ad8c60
 
 
 
0ffe84e
b8ed799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3b9b
 
 
 
b8ed799
7ba3b9b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
title: MTEB Leaderboard 
emoji: 🥇
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 4.20.0
app_file: app.py
pinned: false
tags:
  - leaderboard
startup_duration_timeout: 1h
fullWidth: true
---

## The MTEB Leaderboard repository

This repository contains the code for pushing and updating the MTEB leaderboard daily. 

| Relevant Links                                                | Decription                                                                                                                                                                                                |
|------------------------------------------|------------------------------|
| [mteb](https://github.com/embeddings-benchmark/mteb)          | The implementation of the benchmark. Here you e.g. find the code to run your model on the benchmark.                                                                                                      |
| [leaderboard](https://huggingface.co./spaces/mteb/leaderboard) | The leaderboard itself, here you can view results of model run on MTEB.                                                                                                                                   |
| [results](https://github.com/embeddings-benchmark/results)    | The results of MTEB is stored here. Though you can publish them to the leaderboard [adding](https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md) the result to your model card. |

## Developer setup

To setup the repository:

```bash
git clone https://github.com/embeddings-benchmark/leaderboard.git
cd leaderboard
# install requirements
pip install -r requirements.txt
# fetch new results
# python refresh.py
# if you'd like to add results to previously cached models, you may have to remove these models in `EXTERNAL_MODEL_RESULTS.json`
# you can also directly delete `EXTERNAL_MODEL_RESULTS.json` and it will recreate it (but be much slower)
# run the leaderboard
python app.py
```