Spaces:
Build error
Build error
CallmeKaito
commited on
Commit
•
88fd830
1
Parent(s):
10d1571
Delete SAM.py
Browse files
SAM.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# # Utility functions
|
5 |
-
|
6 |
-
# In[ ]:
|
7 |
-
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
|
12 |
-
def show_mask(mask, ax, random_color=False):
|
13 |
-
if random_color:
|
14 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
15 |
-
else:
|
16 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
17 |
-
h, w = mask.shape[-2:]
|
18 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
19 |
-
ax.imshow(mask_image)
|
20 |
-
|
21 |
-
|
22 |
-
def show_box(box, ax):
|
23 |
-
x0, y0 = box[0], box[1]
|
24 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
25 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
26 |
-
|
27 |
-
def show_boxes_on_image(raw_image, boxes):
|
28 |
-
plt.figure(figsize=(10,10))
|
29 |
-
plt.imshow(raw_image)
|
30 |
-
for box in boxes:
|
31 |
-
show_box(box, plt.gca())
|
32 |
-
plt.axis('on')
|
33 |
-
plt.show()
|
34 |
-
|
35 |
-
def show_points_on_image(raw_image, input_points, input_labels=None):
|
36 |
-
plt.figure(figsize=(10,10))
|
37 |
-
plt.imshow(raw_image)
|
38 |
-
input_points = np.array(input_points)
|
39 |
-
if input_labels is None:
|
40 |
-
labels = np.ones_like(input_points[:, 0])
|
41 |
-
else:
|
42 |
-
labels = np.array(input_labels)
|
43 |
-
show_points(input_points, labels, plt.gca())
|
44 |
-
plt.axis('on')
|
45 |
-
plt.show()
|
46 |
-
|
47 |
-
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
|
48 |
-
plt.figure(figsize=(10,10))
|
49 |
-
plt.imshow(raw_image)
|
50 |
-
input_points = np.array(input_points)
|
51 |
-
if input_labels is None:
|
52 |
-
labels = np.ones_like(input_points[:, 0])
|
53 |
-
else:
|
54 |
-
labels = np.array(input_labels)
|
55 |
-
show_points(input_points, labels, plt.gca())
|
56 |
-
for box in boxes:
|
57 |
-
show_box(box, plt.gca())
|
58 |
-
plt.axis('on')
|
59 |
-
plt.show()
|
60 |
-
|
61 |
-
|
62 |
-
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
|
63 |
-
plt.figure(figsize=(10,10))
|
64 |
-
plt.imshow(raw_image)
|
65 |
-
input_points = np.array(input_points)
|
66 |
-
if input_labels is None:
|
67 |
-
labels = np.ones_like(input_points[:, 0])
|
68 |
-
else:
|
69 |
-
labels = np.array(input_labels)
|
70 |
-
show_points(input_points, labels, plt.gca())
|
71 |
-
for box in boxes:
|
72 |
-
show_box(box, plt.gca())
|
73 |
-
plt.axis('on')
|
74 |
-
plt.show()
|
75 |
-
|
76 |
-
|
77 |
-
def show_points(coords, labels, ax, marker_size=375):
|
78 |
-
pos_points = coords[labels==1]
|
79 |
-
neg_points = coords[labels==0]
|
80 |
-
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
81 |
-
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
82 |
-
|
83 |
-
|
84 |
-
def show_masks_on_image(raw_image, masks, scores):
|
85 |
-
if len(masks.shape) == 4:
|
86 |
-
masks = masks.squeeze()
|
87 |
-
if scores.shape[0] == 1:
|
88 |
-
scores = scores.squeeze()
|
89 |
-
|
90 |
-
nb_predictions = scores.shape[-1]
|
91 |
-
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
|
92 |
-
|
93 |
-
for i, (mask, score) in enumerate(zip(masks, scores)):
|
94 |
-
mask = mask.cpu().detach()
|
95 |
-
axes[i].imshow(np.array(raw_image))
|
96 |
-
show_mask(mask, axes[i])
|
97 |
-
axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
|
98 |
-
axes[i].axis("off")
|
99 |
-
plt.show()
|
100 |
-
|
101 |
-
|
102 |
-
# # Model loading
|
103 |
-
|
104 |
-
# In[ ]:
|
105 |
-
|
106 |
-
|
107 |
-
import torch
|
108 |
-
from transformers import SamModel, SamProcessor
|
109 |
-
|
110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
-
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
112 |
-
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
113 |
-
|
114 |
-
|
115 |
-
# In[ ]:
|
116 |
-
|
117 |
-
|
118 |
-
from PIL import Image
|
119 |
-
import requests
|
120 |
-
|
121 |
-
img_url = "thuya.jpeg"
|
122 |
-
raw_image = Image.open(img_url)
|
123 |
-
|
124 |
-
plt.imshow(raw_image)
|
125 |
-
|
126 |
-
|
127 |
-
# ## Step 1: Retrieve the image embeddings
|
128 |
-
|
129 |
-
# In[ ]:
|
130 |
-
|
131 |
-
|
132 |
-
inputs = processor(raw_image, return_tensors="pt").to(device)
|
133 |
-
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
|
134 |
-
|
135 |
-
|
136 |
-
# In[ ]:
|
137 |
-
|
138 |
-
|
139 |
-
input_points = [[[200, 300]]]
|
140 |
-
show_points_on_image(raw_image, input_points[0])
|
141 |
-
|
142 |
-
|
143 |
-
# In[ ]:
|
144 |
-
|
145 |
-
|
146 |
-
inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
|
147 |
-
# pop the pixel_values as they are not neded
|
148 |
-
inputs.pop("pixel_values", None)
|
149 |
-
inputs.update({"image_embeddings": image_embeddings})
|
150 |
-
|
151 |
-
with torch.no_grad():
|
152 |
-
outputs = model(**inputs)
|
153 |
-
|
154 |
-
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
|
155 |
-
scores = outputs.iou_scores
|
156 |
-
|
157 |
-
|
158 |
-
# In[ ]:
|
159 |
-
|
160 |
-
|
161 |
-
show_masks_on_image(raw_image, masks[0], scores)
|
162 |
-
|
163 |
-
|
164 |
-
# ## Export the masked images
|
165 |
-
|
166 |
-
# In[92]:
|
167 |
-
|
168 |
-
|
169 |
-
import cv2
|
170 |
-
|
171 |
-
if len(masks[0].shape) == 4:
|
172 |
-
masks[0] = masks[0].squeeze()
|
173 |
-
if scores.shape[0] == 1:
|
174 |
-
scores = scores.squeeze()
|
175 |
-
|
176 |
-
nb_predictions = scores.shape[-1]
|
177 |
-
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
|
178 |
-
for i, (mask, score) in enumerate(zip(masks[0], scores)):
|
179 |
-
mask = mask.cpu().detach()
|
180 |
-
axes[i].imshow(np.array(raw_image))
|
181 |
-
# show_mask(mask, axes[i])
|
182 |
-
|
183 |
-
mask_image = (mask.numpy() * 255).astype(np.uint8) # Convert to uint8 format
|
184 |
-
cv2.imwrite('mask.png', mask_image)
|
185 |
-
|
186 |
-
image = cv2.imread('thuya.jpeg')
|
187 |
-
|
188 |
-
color_mask = np.zeros_like(image)
|
189 |
-
color_mask[mask > 0.5] = [30, 144, 255] # Choose any color you like
|
190 |
-
masked_image = cv2.addWeighted(image, 0.6, color_mask, 0.4, 0)
|
191 |
-
|
192 |
-
color = np.array([30/255, 144/255, 255/255])
|
193 |
-
#mask_image = * color.reshape(1, 1, -1)
|
194 |
-
|
195 |
-
new_image = -image* np.tile(mask_image[...,None], 3)
|
196 |
-
|
197 |
-
cv2.imwrite('masked_image2.png', cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR))
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
# In[85]:
|
202 |
-
|
203 |
-
|
204 |
-
.shape
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|