File size: 1,986 Bytes
a114b97
 
 
 
 
 
 
bb03dfe
 
a114b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import gradio as gr
import numpy as np
import layoutparser as lp
from PIL import Image
import PIL

os.system('pip install "git+https://github.com/facebookresearch/[email protected]#egg=detectron2" ')

model = lp.Detectron2LayoutModel('lp://PubLayNet/faster_rcnn_R_50_FPN_3x/config', 
                                 extra_config=["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8],
                                 label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"})

article="References<br>[1] Z. Shen, R. Zhang, M. Dell, B. C. G. Lee, J. Carlson, and W. Li, “LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis,” arXiv Prepr. arXiv2103.15348, 2021."
description = "Layout Detection/Parsing is one of the important tasks of converting unstructured data into structured data. This task helps to automate, digitize and organize the data in a usable format. In this project, we utilize LayoutParser library (https://github.com/Layout-Parser/layout-parser) to perform Layout Detection using pre-trained Faster_rcnn_R_50_FPN model that can classify the layout based on Text, Title, List, Table and Figure. Upload an image of a document or click an example image to check this out."

def show_preds(input_image):
  
  img = PIL.Image.fromarray(input_image, 'RGB')
  basewidth = 900
  wpercent = (basewidth/float(img.size[0]))

  hsize = int((float(img.size[1])*float(wpercent)))
  img = img.resize((basewidth,hsize), Image.ANTIALIAS)
  image_array=np.array(img)
  layout = model.detect(image_array)
  return lp.draw_box(image_array, layout, show_element_type=True)

outputs = gr.outputs.Image(type="pil")

examples = [['example1.png'], ['example2.png']]

gr_interface = gr.Interface(fn=show_preds, inputs=["image"], outputs=outputs, title='Document Layout Detector/Parser', article=article, description=description, examples=examples,  analytics_enabled = True, enable_queue=True)
gr_interface.launch(inline=False, share=True, debug=True)