import gradio as gr import os import sys from pathlib import Path import random import string import time from queue import Queue queue = Queue() text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion") proc5=gr.Interface.load("models/dreamlike-art/dreamlike-diffusion-1.0") import random def add_random_noise(prompt, noise_level=0.07): noise_level=0.01 # Get the percentage of characters to add as noise percentage_noise = noise_level * 5 # Get the number of characters to add as noise num_noise_chars = int(len(prompt) * (percentage_noise/100)) # Get the indices of the characters to add noise to noise_indices = random.sample(range(len(prompt)), num_noise_chars) # Add noise to the selected characters prompt_list = list(prompt) for index in noise_indices: prompt_list[index] = random.choice(string.ascii_letters + string.punctuation) return "".join(prompt_list) queue_length_counter = 0 def send_it8(inputs, noise_level, proc5=proc5): global queue_length_counter prompt_list = list(inputs) prompt_with_noise = "".join(prompt_list) if queue_length_counter >= 15: if not queue.empty(): queue.queue.clear() queue_length_counter = 0 output8 = proc5(prompt_with_noise) queue_length_counter += 1 time.sleep(3) return output8 time.sleep(1) def get_prompts(prompt_text): global queue_length_counter if queue_length_counter >= 15: if not queue.empty(): queue.queue.clear() queue_length_counter = 0 output = text_gen(prompt_text) queue_length_counter += 1 time.sleep(3) return output time.sleep(1) with gr.Blocks() as myface: with gr.Row(): input_text=gr.Textbox(label="Short Prompt") see_prompts=gr.Button("Magic Prompt") with gr.Row(): prompt=gr.Textbox(label="Enter Prompt") noise_level=gr.Slider(minimum=0.1, maximum=3, step=0.1, label="Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs.") run=gr.Button("Generate") with gr.Row(): output8=gr.Image(label="Dreamlike Diffusion 1.0") run.click(send_it8, inputs=[prompt, noise_level], outputs=[output8],api_name="predict") see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt]) myface.queue(concurrency_count=8) myface.launch(enable_queue=True, inline=True) while True: if queue.qsize() >= 20: queue.queue.clear() time.sleep(30)