TheStinger's picture
Added support to download audio files from Google Drive + File name fix
06544d3
raw
history blame
4.18 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import soundfile as sf
import requests
def download_file(url):
# Estrai l'ID del file dal link di Google Drive
file_id = url.split('/')[-2]
# Crea il link di download diretto
download_url = f'https://docs.google.com/uc?export=download&id={file_id}'
# Scarica il file
response = requests.get(download_url, allow_redirects=True)
local_filename = url.split('/')[-1] + '.wav'
open(local_filename, 'wb').write(response.content)
return local_filename
def main():
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown(
"""
# <div align="center"> Ilaria Audio Analyzer πŸ’– </div>
Audio Analyzer Software by Ilaria, Help me on [Ko-Fi!](https://ko-fi.com/ilariaowo)\n
Special thanks to Alex Murkoff for helping me coding it!
Need help with AI? Join [Join AI Hub!](https://discord.gg/aihub)
"""
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type='filepath')
create_spec_butt = gr.Button(value='Create Spectrogram And Get Info', variant='primary')
with gr.Column():
output_markdown = gr.Markdown(value="", visible=True)
image_output = gr.Image(type='filepath', interactive=False)
with gr.Accordion('Audio Downloader', open=False):
url_input = gr.Textbox(value='', label='Google Drive Audio URL')
download_butt = gr.Button(value='Download audio', variant='primary')
download_butt.click(fn=download_file, inputs=[url_input], outputs=[audio_input])
create_spec_butt.click(fn=create_spectrogram_and_get_info, inputs=[audio_input], outputs=[output_markdown, image_output])
download_butt.click(fn=download_file, inputs=[url_input], outputs=[audio_input])
create_spec_butt.click(fn=create_spectrogram_and_get_info, inputs=[audio_input], outputs=[output_markdown, image_output])
app.queue(max_size=1022).launch(share=True)
def create_spectrogram_and_get_info(audio_file):
# Clear figure in case it has data in it
plt.clf()
# Read the audio data from the file
audio_data, sample_rate = sf.read(audio_file)
# Convert to mono if it's not mono
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Create the spectrogram
plt.specgram(audio_data, Fs=sample_rate / 1, NFFT=4096, sides='onesided',
cmap="Reds_r", scale_by_freq=True, scale='dB', mode='magnitude', window=np.hanning(4096))
# Save the spectrogram to a PNG file
plt.savefig('spectrogram.png')
# Get the audio file info
audio_info = sf.info(audio_file)
bit_depth = {'PCM_16': 16, 'FLOAT': 32}.get(audio_info.subtype, 0)
# Convert duration to minutes, seconds, and milliseconds
minutes, seconds = divmod(audio_info.duration, 60)
seconds, milliseconds = divmod(seconds, 1)
milliseconds *= 1000 # convert from seconds to milliseconds
# Convert bitrate to mb/s
bitrate = audio_info.samplerate * audio_info.channels * bit_depth / 8 / 1024 / 1024
# Calculate speed in kbps
speed_in_kbps = audio_info.samplerate * bit_depth / 1000
# Create a table with the audio file info
filename_without_extension, _ = os.path.splitext(os.path.basename(audio_file))
info_table = f"""
| Information | Value |
| :---: | :---: |
| File Name | {filename_without_extension} |
| Duration | {int(minutes)} minutes - {int(seconds)} seconds - {int(milliseconds)} milliseconds |
| Bitrate | {speed_in_kbps} kbp/s |
| Audio Channels | {audio_info.channels} |
| Samples per second | {audio_info.samplerate} Hz |
| Bit per second | {audio_info.samplerate * audio_info.channels * bit_depth} bit/s |
"""
# Return the PNG file of the spectrogram and the info table
return info_table, 'spectrogram.png'
# Create the Gradio interface
main()