TheStinger's picture
Update app.py
501344c verified
raw
history blame
4.06 kB
import gradio as gr
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
import os
import soundfile as sf
import requests
def download_file(url):
file_id = url.split('/')[-2]
download_url = f'https://docs.google.com/uc?export=download&id={file_id}'
response = requests.get(download_url, allow_redirects=True)
local_filename = url.split('/')[-1] + '.wav'
open(local_filename, 'wb').write(response.content)
return local_filename
def main():
with gr.Blocks() as app:
gr.Markdown(
"""
Audio Analyzer Software by Ilaria, Help me on Ko-Fi!\n
Special thanks to Alex Murkoff for helping me coding it!
Need help with AI? Join Join AI Hub!
"""
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type='filepath')
create_spec_butt = gr.Button(value='Create Spectrogram And Get Info', variant='primary')
with gr.Column():
output_markdown = gr.Markdown(value="", visible=True)
image_output = gr.Image(type='filepath', interactive=False)
with gr.Accordion('Audio Downloader', open=False):
url_input = gr.Textbox(value='', label='Google Drive Audio URL')
download_butt = gr.Button(value='Download audio', variant='primary')
download_butt.click(fn=download_file, inputs=[url_input], outputs=[audio_input])
create_spec_butt.click(fn=create_spectrogram_and_get_info, inputs=[audio_input], outputs=[output_markdown, image_output])
download_butt.click(fn=download_file, inputs=[url_input], outputs=[audio_input])
create_spec_butt.click(fn=create_spectrogram_and_get_info, inputs=[audio_input], outputs=[output_markdown, image_output])
app.queue(max_size=1022).launch(share=True)
def create_spectrogram_and_get_info(audio_file):
plt.clf()
cdict = {'red': [(0.0, 0.5, 0.5),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'blue': [(0.0, 0.5, 0.5),
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.0)]}
custom_cmap = LinearSegmentedColormap('CustomMap', cdict)
plt.figure(figsize=(15, 5))
audio_data, sample_rate = sf.read(audio_file)
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
plt.specgram(audio_data, Fs=sample_rate / 1, NFFT=4096, sides='onesided',
cmap=custom_cmap, scale_by_freq=True, scale='dB', mode='magnitude', window=np.hanning(4096)) # Usa la mappa di colori personalizzata
plt.savefig('spectrogram.png', dpi=300)
audio_info = sf.info(audio_file)
bit_depth = {'PCM_16': 16, 'FLOAT': 32}.get(audio_info.subtype, 0)
minutes, seconds = divmod(audio_info.duration, 60)
seconds, milliseconds = divmod(seconds, 1)
milliseconds *= 1000
bitrate = audio_info.samplerate * audio_info.channels * bit_depth / 8 / 1024 / 1024
speed_in_kbps = audio_info.samplerate * bit_depth / 1000
filename_without_extension, _ = os.path.splitext(os.path.basename(audio_file))
info_table = f"""
| Information | Value |
| :---: | :---: |
| File Name | {filename_without_extension} |
| Duration | {int(minutes)} minutes - {int(seconds)} seconds - {int(milliseconds)} milliseconds |
| Bitrate | {speed_in_kbps} kbp/s |
| Audio Channels | {audio_info.channels} |
| Samples per second | {audio_info.samplerate} Hz |
| Bit per second | {audio_info.samplerate * audio_info.channels * bit_depth} bit/s |
"""
# Return the PNG file of the spectrogram and the info table
return info_table, 'spectrogram.png'
# Create the Gradio interface
main()