TheStinger's picture
Update app.py
0166575
raw
history blame
2.08 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import soundfile as sf
def create_spectrogram_and_get_info(audio_file):
# Clear figure in case it has data in it
plt.clf()
# Read the audio data from the file
audio_data, sample_rate = sf.read(audio_file)
# Flatten the audio data if it's not mono
audio_data = audio_data.flatten() if len(audio_data.shape) > 1 else audio_data
# Create the spectrogram
plt.specgram(audio_data, Fs=sample_rate / 1, NFFT=4096, sides='onesided',
cmap="Reds_r", scale_by_freq=True, scale='dB', mode='magnitude')
# Save the spectrogram to a PNG file
plt.savefig('spectrogram.png')
# Get the audio file info
audio_info = sf.info(audio_file)
bit_depth = {'PCM_16': 16, 'FLOAT': 32}.get(audio_info.subtype, 0)
# Convert duration to minutes, seconds, and milliseconds
minutes, seconds = divmod(audio_info.duration, 60)
seconds, milliseconds = divmod(seconds, 1)
milliseconds *= 1000 # convert from seconds to milliseconds
# Convert bitrate to Mb/s
bitrate = audio_info.samplerate * audio_info.channels * bit_depth / 8 / 1024 / 1024
# Create a table with the audio file info
info_table = f"""
# Ilaria Audio Analyzer πŸ’–
Audio Analyzer Software by Ilaria, Help me on Ko-Fi
Special thanks to Alex Murkoff for helping me coding it!
Need help with AI? Join AI Hub!
| Information | Value |
| --- | --- |
| Duration | {int(minutes)} minutes - {int(seconds)} seconds - {int(milliseconds)} milliseconds |
| Samples per second | {audio_info.samplerate} Hz |
| Audio Channels | {audio_info.channels} |
| Bitrate | {bitrate:.2f} Mb/s |
| Extension | {os.path.splitext(audio_file)[1]} |
"""
# Return the PNG file of the spectrogram and the info table
return info_table, 'spectrogram.png'
# Create the Gradio interface
iface = gr.Interface(fn=create_spectrogram_and_get_info, inputs=gr.Audio(type="filepath"), outputs=["markdown", "image"])
iface.launch()