import glob import logging import os from pathlib import Path import cv2 import numpy as np import onnxruntime as rt import torch from PIL import Image from rembg import new_session, remove from tqdm.rich import tqdm logger = logging.getLogger(__name__) def animseg_create_fg(frame_dir, output_dir, output_mask_dir, masked_area_list, bg_color=(0,255,0), mask_padding=0, ): frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False)) if mask_padding != 0: kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8) kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] rmbg_model = rt.InferenceSession("data/models/anime_seg/isnetis.onnx", providers=providers) def get_mask(img, s=1024): img = (img / 255).astype(np.float32) h, w = h0, w0 = img.shape[:-1] h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) ph, pw = s - h, s - w img_input = np.zeros([s, s, 3], dtype=np.float32) img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) img_input = np.transpose(img_input, (2, 0, 1)) img_input = img_input[np.newaxis, :] mask = rmbg_model.run(None, {'img': img_input})[0][0] mask = np.transpose(mask, (1, 2, 0)) mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] mask = cv2.resize(mask, (w0, h0)) mask = (mask * 255).astype(np.uint8) return mask for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask"): frame = Path(frame) file_name = frame.name cur_frame_no = int(frame.stem) img = Image.open(frame) img_array = np.asarray(img) mask_array = get_mask(img_array) # Image.fromarray(mask_array).save( output_dir / Path("raw_" + file_name)) if mask_padding < 0: mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1) elif mask_padding > 0: mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1) mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_OPEN, kernel2) mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT) if masked_area_list[cur_frame_no] is not None: masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...]) else: masked_area_list[cur_frame_no] = mask_array[None,...] if output_mask_dir: Image.fromarray(mask_array).save( output_mask_dir / file_name ) img_array = np.asarray(img).copy() if bg_color is not None: img_array[mask_array == 0] = bg_color img = Image.fromarray(img_array) img.save( output_dir / file_name ) return masked_area_list