import glob import logging import os from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from rembg import new_session, remove from tqdm.rich import tqdm logger = logging.getLogger(__name__) def rembg_create_fg(frame_dir, output_dir, output_mask_dir, masked_area_list, bg_color=(0,255,0), mask_padding=0, ): frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False)) if mask_padding != 0: kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8) kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) session = new_session(providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask"): frame = Path(frame) file_name = frame.name cur_frame_no = int(frame.stem) img = Image.open(frame) img_array = np.asarray(img) mask_array = remove(img_array, only_mask=True, session=session) #mask_array = mask_array[None,...] if mask_padding < 0: mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1) elif mask_padding > 0: mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1) mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_OPEN, kernel2) mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT) if masked_area_list[cur_frame_no] is not None: masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...]) else: masked_area_list[cur_frame_no] = mask_array[None,...] if output_mask_dir: Image.fromarray(mask_array).save( output_mask_dir / file_name ) img_array = np.asarray(img).copy() if bg_color is not None: img_array[mask_array == 0] = bg_color img = Image.fromarray(img_array) img.save( output_dir / file_name ) return masked_area_list