|
import logging |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.models.attention import Attention, FeedForward |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from einops import rearrange, repeat |
|
from torch import Tensor, nn |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
@dataclass |
|
class TemporalTransformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): |
|
if motion_module_type == "Vanilla": |
|
return VanillaTemporalModule( |
|
in_channels=in_channels, |
|
**motion_module_kwargs, |
|
) |
|
else: |
|
raise ValueError |
|
|
|
|
|
class VanillaTemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads=8, |
|
num_transformer_block=2, |
|
attention_block_types=("Temporal_Self", "Temporal_Self"), |
|
cross_frame_attention_mode=None, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=24, |
|
temporal_attention_dim_div=1, |
|
zero_initialize=True, |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, |
|
num_layers=num_transformer_block, |
|
attention_block_types=attention_block_types, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None): |
|
hidden_states = input_tensor |
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
@maybe_allow_in_graph |
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
num_layers, |
|
attention_block_types=( |
|
"Temporal_Self", |
|
"Temporal_Self", |
|
), |
|
dropout=0.0, |
|
norm_num_groups=32, |
|
cross_attention_dim=768, |
|
activation_fn="geglu", |
|
attention_bias=False, |
|
upcast_attention=False, |
|
cross_frame_attention_mode=None, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=24, |
|
): |
|
super().__init__() |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
attention_block_types=attention_block_types, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Tensor, |
|
encoder_hidden_states: Optional[Tensor] = None, |
|
attention_mask: Optional[Tensor] = None, |
|
): |
|
assert ( |
|
hidden_states.dim() == 5 |
|
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
|
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length |
|
) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return output |
|
|
|
|
|
@maybe_allow_in_graph |
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
attention_block_types=( |
|
"Temporal_Self", |
|
"Temporal_Self", |
|
), |
|
dropout=0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: int = 768, |
|
activation_fn: str = "geglu", |
|
attention_bias: bool = False, |
|
upcast_attention: bool = False, |
|
cross_frame_attention_mode=None, |
|
temporal_position_encoding: bool = False, |
|
temporal_position_encoding_max_len: int = 24, |
|
): |
|
super().__init__() |
|
|
|
attention_blocks = [] |
|
norms = [] |
|
|
|
for block_name in attention_block_types: |
|
attention_blocks.append( |
|
VersatileAttention( |
|
attention_mode=block_name.split("_")[0], |
|
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
) |
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
self.norms = nn.ModuleList(norms) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
for attention_block, norm in zip(self.attention_blocks, self.norms): |
|
norm_hidden_states = norm(hidden_states) |
|
hidden_states = ( |
|
attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states |
|
if attention_block.is_cross_attention |
|
else None, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout: float = 0.0, max_len: int = 24): |
|
super().__init__() |
|
self.dropout: nn.Module = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe: Tensor = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x: Tensor): |
|
x = x + self.pe[:, : x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
@maybe_allow_in_graph |
|
class VersatileAttention(Attention): |
|
def __init__( |
|
self, |
|
attention_mode: str = None, |
|
cross_frame_attention_mode: Optional[str] = None, |
|
temporal_position_encoding: bool = False, |
|
temporal_position_encoding_max_len: int = 24, |
|
*args, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
if attention_mode.lower() != "temporal": |
|
raise ValueError(f"Attention mode {attention_mode} is not supported.") |
|
|
|
self.attention_mode = attention_mode |
|
self.is_cross_attention = kwargs["cross_attention_dim"] is not None |
|
|
|
self.pos_encoder = ( |
|
PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len) |
|
if (temporal_position_encoding and attention_mode == "Temporal") |
|
else None |
|
) |
|
|
|
def extra_repr(self): |
|
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" |
|
|
|
def forward( |
|
self, hidden_states: Tensor, encoder_hidden_states=None, attention_mask=None, video_length=None |
|
): |
|
if self.attention_mode == "Temporal": |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
if encoder_hidden_states and encoder_hidden_states.shape[0] < d: |
|
encoder_hidden_states = ( |
|
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) |
|
if encoder_hidden_states is not None |
|
else encoder_hidden_states |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
hidden_states = self.processor(self, hidden_states, encoder_hidden_states, attention_mask) |
|
|
|
if self.attention_mode == "Temporal": |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|