File size: 26,195 Bytes
d0ffe9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import glob
import logging
import os
from pathlib import Path

import cv2
import numpy as np
import torch
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from PIL import Image
from segment_anything_hq import (SamPredictor, build_sam_vit_b,
                                 build_sam_vit_h, build_sam_vit_l)
from segment_anything_hq.build_sam import build_sam_vit_t
from tqdm.rich import tqdm

logger = logging.getLogger(__name__)

build_sam_table={
    "sam_hq_vit_l":build_sam_vit_l,
    "sam_hq_vit_h":build_sam_vit_h,
    "sam_hq_vit_b":build_sam_vit_b,
    "sam_hq_vit_tiny":build_sam_vit_t,
}

# adapted from https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_demo.py
class MaskPredictor:
    def __init__(self,model_config_path, model_checkpoint_path,device, sam_checkpoint, box_threshold=0.3, text_threshold=0.25 ):
        self.groundingdino_model = None
        self.sam_predictor = None

        self.model_config_path = model_config_path
        self.model_checkpoint_path = model_checkpoint_path
        self.device = device
        self.sam_checkpoint = sam_checkpoint

        self.box_threshold = box_threshold
        self.text_threshold = text_threshold

    def load_groundingdino_model(self):
        args = SLConfig.fromfile(self.model_config_path)
        args.device = self.device
        model = build_model(args)
        checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
        load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
        #print(load_res)
        _ = model.eval()
        self.groundingdino_model = model

    def load_sam_predictor(self):
        s = Path(self.sam_checkpoint)
        self.sam_predictor = SamPredictor(build_sam_table[ s.stem ](checkpoint=self.sam_checkpoint).to(self.device))

    def transform_image(self,image_pil):
        import groundingdino.datasets.transforms as T
        transform = T.Compose(
            [
                T.RandomResize([800], max_size=1333),
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )
        image, _ = transform(image_pil, None)  # 3, h, w
        return image

    def get_grounding_output(self, image, caption, with_logits=True):
        model = self.groundingdino_model
        device = self.device

        caption = caption.lower()
        caption = caption.strip()
        if not caption.endswith("."):
            caption = caption + "."
        model = model.to(device)
        image = image.to(device)
        with torch.no_grad():
            outputs = model(image[None], captions=[caption])
        logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
        boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
        logits.shape[0]

        # filter output
        logits_filt = logits.clone()
        boxes_filt = boxes.clone()
        filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
        logits_filt = logits_filt[filt_mask]  # num_filt, 256
        boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
        logits_filt.shape[0]

        # get phrase
        tokenlizer = model.tokenizer
        tokenized = tokenlizer(caption)
        # build pred
        pred_phrases = []
        for logit, box in zip(logits_filt, boxes_filt):
            pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
            if with_logits:
                pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
            else:
                pred_phrases.append(pred_phrase)

        return boxes_filt, pred_phrases


    def __call__(self, image_pil:Image, text_prompt):
        if self.groundingdino_model is None:
            self.load_groundingdino_model()
            self.load_sam_predictor()

        transformed_img = self.transform_image(image_pil)

        # run grounding dino model
        boxes_filt, pred_phrases = self.get_grounding_output(
            transformed_img, text_prompt
        )

        if boxes_filt.shape[0] == 0:
            logger.info(f"object not found")
            w, h = image_pil.size
            return np.zeros(shape=(1,h,w), dtype=bool)

        img_array = np.array(image_pil)
        self.sam_predictor.set_image(img_array)

        size = image_pil.size
        H, W = size[1], size[0]
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        boxes_filt = boxes_filt.cpu()
        transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, img_array.shape[:2]).to(self.device)

        masks, _, _ = self.sam_predictor.predict_torch(
            point_coords = None,
            point_labels = None,
            boxes = transformed_boxes.to(self.device),
            multimask_output = False,
        )

        result = None
        for m in masks:
            if result is None:
                result = m
            else:
                result |= m

        result = result.cpu().detach().numpy().copy()

        return result

def load_mask_list(mask_dir, masked_area_list, mask_padding):

    mask_frame_list = sorted(glob.glob( os.path.join(mask_dir, "[0-9]*.png"), recursive=False))

    kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8)

    for m in mask_frame_list:
        cur = int(Path(m).stem)
        tmp = np.asarray(Image.open(m))

        if mask_padding < 0:
            tmp = cv2.erode(tmp, kernel,iterations = 1)
        elif mask_padding > 0:
            tmp = cv2.dilate(tmp, kernel,iterations = 1)

        masked_area_list[cur] = tmp[None,...]

    return masked_area_list

def crop_mask_list(mask_list):
    area_list = []

    max_h = 0
    max_w = 0

    for m in mask_list:
        if m is None:
            area_list.append(None)
            continue
        m = m > 127
        area = np.where(m[0] == True)
        if area[0].size == 0:
            area_list.append(None)
            continue

        ymin = min(area[0])
        ymax = max(area[0])
        xmin = min(area[1])
        xmax = max(area[1])
        h = ymax+1 - ymin
        w = xmax+1 - xmin
        max_h = max(max_h, h)
        max_w = max(max_w, w)
        area_list.append( (ymin, ymax, xmin, xmax) )
        #crop = m[ymin:ymax+1,xmin:xmax+1]

    logger.info(f"{max_h=}")
    logger.info(f"{max_w=}")

    border_h = mask_list[0].shape[1]
    border_w = mask_list[0].shape[2]

    mask_pos_list=[]
    cropped_mask_list=[]

    for a, m in zip(area_list, mask_list):
        if m is None or a is None:
            mask_pos_list.append(None)
            cropped_mask_list.append(None)
            continue

        ymin,ymax,xmin,xmax = a
        h = ymax+1 - ymin
        w = xmax+1 - xmin

        # H
        diff_h = max_h - h
        dh1 = diff_h//2
        dh2 = diff_h - dh1
        y1 = ymin - dh1
        y2 = ymax + dh2
        if y1 < 0:
            y1 = 0
            y2 = max_h-1
        elif y2 >= border_h:
            y1 = (border_h-1) - (max_h - 1)
            y2 = (border_h-1)

        # W
        diff_w = max_w - w
        dw1 = diff_w//2
        dw2 = diff_w - dw1
        x1 = xmin - dw1
        x2 = xmax + dw2
        if x1 < 0:
            x1 = 0
            x2 = max_w-1
        elif x2 >= border_w:
            x1 = (border_w-1) - (max_w - 1)
            x2 = (border_w-1)

        mask_pos_list.append( (int(x1),int(y1)) )
        m = m[0][y1:y2+1,x1:x2+1]
        cropped_mask_list.append( m[None,...] )


    return cropped_mask_list, mask_pos_list, (max_h,max_w)

def crop_frames(pos_list, crop_size_hw, frame_dir):
    h,w = crop_size_hw

    for i,pos in tqdm(enumerate(pos_list),total=len(pos_list)):
        filename = f"{i:08d}.png"
        frame_path = frame_dir / filename
        if not frame_path.is_file():
            logger.info(f"{frame_path=} not found. skip")
            continue
        if pos is None:
            continue

        x, y = pos

        tmp = np.asarray(Image.open(frame_path))
        tmp = tmp[y:y+h,x:x+w,...]
        Image.fromarray(tmp).save(frame_path)

def save_crop_info(mask_pos_list, crop_size_hw, frame_size_hw, save_path):
    import json

    pos_map = {}

    for i, pos in enumerate(mask_pos_list):
        if pos is not None:
            pos_map[str(i)]=pos

    info = {
        "frame_height" : int(frame_size_hw[0]),
        "frame_width" : int(frame_size_hw[1]),
        "height": int(crop_size_hw[0]),
        "width": int(crop_size_hw[1]),
        "pos_map" : pos_map,
    }

    with open(save_path, mode="wt", encoding="utf-8") as f:
        json.dump(info, f, ensure_ascii=False, indent=4)

def restore_position(mask_list, crop_info):

    f_h = crop_info["frame_height"]
    f_w = crop_info["frame_width"]

    h = crop_info["height"]
    w = crop_info["width"]
    pos_map = crop_info["pos_map"]

    for i in pos_map:
        x,y = pos_map[i]
        i = int(i)

        m = mask_list[i]

        if m is None:
            continue

        m = cv2.resize( m, (w,h) )
        if len(m.shape) == 2:
            m = m[...,None]

        frame = np.zeros(shape=(f_h,f_w,m.shape[2]), dtype=np.uint8)

        frame[y:y+h,x:x+w,...] = m
        mask_list[i] = frame


    return mask_list

def load_frame_list(frame_dir, frame_array_list, crop_info):
    frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))

    for f in frame_list:
        cur = int(Path(f).stem)
        frame_array_list[cur] = np.asarray(Image.open(f))

    if not crop_info:
        logger.info(f"crop_info is not exists -> skip restore")
        return frame_array_list

    for i,f in enumerate(frame_array_list):
        if f is None:
            continue
        frame_array_list[i] = f

    frame_array_list = restore_position(frame_array_list, crop_info)

    return frame_array_list


def create_fg(mask_token, frame_dir, output_dir, output_mask_dir, masked_area_list,
              box_threshold=0.3,
              text_threshold=0.25,
              bg_color=(0,255,0),
              mask_padding=0,
              groundingdino_config="config/GroundingDINO/GroundingDINO_SwinB_cfg.py",
              groundingdino_checkpoint="data/models/GroundingDINO/groundingdino_swinb_cogcoor.pth",
              sam_checkpoint="data/models/SAM/sam_hq_vit_l.pth",
              device="cuda",
              ):

    frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))

    with torch.no_grad():
        predictor = MaskPredictor(
            model_config_path=groundingdino_config,
            model_checkpoint_path=groundingdino_checkpoint,
            device=device,
            sam_checkpoint=sam_checkpoint,
            box_threshold=box_threshold,
            text_threshold=text_threshold,
        )


        if mask_padding != 0:
            kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8)
        kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))

        for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask from {mask_token=}"):
            frame = Path(frame)
            file_name = frame.name

            cur_frame_no = int(frame.stem)

            img = Image.open(frame)

            mask_array = predictor(img, mask_token)
            mask_array = mask_array[0].astype(np.uint8) * 255


            if mask_padding < 0:
                mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1)
            elif mask_padding > 0:
                mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1)

            mask_array = cv2.morphologyEx(mask_array.astype(np.uint8), cv2.MORPH_OPEN, kernel2)
            mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT)

            if masked_area_list[cur_frame_no] is not None:
                masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...])
                #masked_area_list[cur_frame_no] = masked_area_list[cur_frame_no] | mask_array[None,...]
            else:
                masked_area_list[cur_frame_no] = mask_array[None,...]


            if output_mask_dir:
                #mask_array2 = mask_array.astype(np.uint8).clip(0,1)
                #mask_array2 *= 255
                Image.fromarray(mask_array).save( output_mask_dir / file_name )

            img_array = np.asarray(img).copy()
            if bg_color is not None:
                img_array[mask_array == 0] = bg_color

            img = Image.fromarray(img_array)

            img.save( output_dir / file_name )

    return masked_area_list


def dilate_mask(masked_area_list, flow_mask_dilates=8, mask_dilates=5):
    kernel = np.ones((flow_mask_dilates,flow_mask_dilates),np.uint8)
    flow_masks = [ cv2.dilate(mask[0].astype(np.uint8),kernel,iterations = 1) for mask in masked_area_list ]
    flow_masks = [ Image.fromarray(mask * 255) for mask in flow_masks ]

    kernel = np.ones((mask_dilates,mask_dilates),np.uint8)
    dilated_masks = [ cv2.dilate(mask[0].astype(np.uint8),kernel,iterations = 1) for mask in masked_area_list ]
    dilated_masks = [ Image.fromarray(mask * 255) for mask in dilated_masks ]

    return flow_masks, dilated_masks


# adapted from https://github.com/sczhou/ProPainter/blob/main/inference_propainter.py
def resize_frames(frames, size=None):
    if size is not None:
        out_size = size
        process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
        frames = [f.resize(process_size) for f in frames]
    else:
        out_size = frames[0].size
        process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
        if not out_size == process_size:
            frames = [f.resize(process_size) for f in frames]

    return frames, process_size, out_size

def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
    ref_index = []
    if ref_num == -1:
        for i in range(0, length, ref_stride):
            if i not in neighbor_ids:
                ref_index.append(i)
    else:
        start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
        end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
        for i in range(start_idx, end_idx, ref_stride):
            if i not in neighbor_ids:
                if len(ref_index) > ref_num:
                    break
                ref_index.append(i)
    return ref_index

def create_bg(frame_dir, output_dir, masked_area_list,
              use_half = True,
              raft_iter = 20,
              subvideo_length=80,
              neighbor_length=10,
              ref_stride=10,
              device="cuda",
              low_vram = False,
              ):
    import sys
    repo_path = Path("src/animatediff/repo/ProPainter").absolute()
    repo_path = str(repo_path)
    sys.path.append(repo_path)

    from animatediff.repo.ProPainter.core.utils import to_tensors
    from animatediff.repo.ProPainter.model.modules.flow_comp_raft import \
        RAFT_bi
    from animatediff.repo.ProPainter.model.propainter import InpaintGenerator
    from animatediff.repo.ProPainter.model.recurrent_flow_completion import \
        RecurrentFlowCompleteNet
    from animatediff.repo.ProPainter.utils.download_util import \
        load_file_from_url

    pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
    model_dir = Path("data/models/ProPainter")
    model_dir.mkdir(parents=True, exist_ok=True)

    frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))

    frames = [Image.open(f) for f in frame_list]

    if low_vram:
        org_size = frames[0].size
        _w, _h = frames[0].size
        if max(_w, _h) > 512:
            _w = int(_w * 0.75)
            _h = int(_h * 0.75)

        frames, size, out_size = resize_frames(frames, (_w, _h))
        out_size = org_size

        masked_area_list = [m[0] for m in masked_area_list]
        masked_area_list = [cv2.resize(m.astype(np.uint8), dsize=size) for m in masked_area_list]
        masked_area_list = [ m>127 for m in masked_area_list]
        masked_area_list = [m[None,...] for m in masked_area_list]

    else:
        frames, size, out_size = resize_frames(frames, None)
        masked_area_list = [ m>127 for m in masked_area_list]

    w, h = size

    flow_masks,masks_dilated = dilate_mask(masked_area_list)

    frames_inp = [np.array(f).astype(np.uint8) for f in frames]
    frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
    flow_masks = to_tensors()(flow_masks).unsqueeze(0)
    masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
    frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)


    ##############################################
    # set up RAFT and flow competition model
    ##############################################
    ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
                                    model_dir=model_dir, progress=True, file_name=None)
    fix_raft = RAFT_bi(ckpt_path, device)

    ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
                                    model_dir=model_dir, progress=True, file_name=None)
    fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
    for p in fix_flow_complete.parameters():
        p.requires_grad = False
    fix_flow_complete.to(device)
    fix_flow_complete.eval()

    ##############################################
    # set up ProPainter model
    ##############################################
    ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
                                    model_dir=model_dir, progress=True, file_name=None)
    model = InpaintGenerator(model_path=ckpt_path).to(device)
    model.eval()



    ##############################################
    # ProPainter inference
    ##############################################
    video_length = frames.size(1)
    logger.info(f'\nProcessing: [{video_length} frames]...')
    with torch.no_grad():
        # ---- compute flow ----
        if max(w,h) <= 640:
            short_clip_len = 12
        elif max(w,h) <= 720:
            short_clip_len = 8
        elif max(w,h) <= 1280:
            short_clip_len = 4
        else:
            short_clip_len = 2

        # use fp32 for RAFT
        if frames.size(1) > short_clip_len:
            gt_flows_f_list, gt_flows_b_list = [], []
            for f in range(0, video_length, short_clip_len):
                end_f = min(video_length, f + short_clip_len)
                if f == 0:
                    flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=raft_iter)
                else:
                    flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=raft_iter)

                gt_flows_f_list.append(flows_f)
                gt_flows_b_list.append(flows_b)
                torch.cuda.empty_cache()

            gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
            gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
            gt_flows_bi = (gt_flows_f, gt_flows_b)
        else:
            gt_flows_bi = fix_raft(frames, iters=raft_iter)
            torch.cuda.empty_cache()


        if use_half:
            frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
            gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
            fix_flow_complete = fix_flow_complete.half()
            model = model.half()


        # ---- complete flow ----
        flow_length = gt_flows_bi[0].size(1)
        if flow_length > subvideo_length:
            pred_flows_f, pred_flows_b = [], []
            pad_len = 5
            for f in range(0, flow_length, subvideo_length):
                s_f = max(0, f - pad_len)
                e_f = min(flow_length, f + subvideo_length + pad_len)
                pad_len_s = max(0, f) - s_f
                pad_len_e = e_f - min(flow_length, f + subvideo_length)
                pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
                    (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
                    flow_masks[:, s_f:e_f+1])
                pred_flows_bi_sub = fix_flow_complete.combine_flow(
                    (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
                    pred_flows_bi_sub,
                    flow_masks[:, s_f:e_f+1])

                pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
                pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
                torch.cuda.empty_cache()

            pred_flows_f = torch.cat(pred_flows_f, dim=1)
            pred_flows_b = torch.cat(pred_flows_b, dim=1)
            pred_flows_bi = (pred_flows_f, pred_flows_b)
        else:
            pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
            pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
            torch.cuda.empty_cache()


        # ---- image propagation ----
        masked_frames = frames * (1 - masks_dilated)
        subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
        if video_length > subvideo_length_img_prop:
            updated_frames, updated_masks = [], []
            pad_len = 10
            for f in range(0, video_length, subvideo_length_img_prop):
                s_f = max(0, f - pad_len)
                e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
                pad_len_s = max(0, f) - s_f
                pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)

                b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
                pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
                prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f],
                                                                       pred_flows_bi_sub,
                                                                       masks_dilated[:, s_f:e_f],
                                                                       'nearest')
                updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
                                    prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
                updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)

                updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
                updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
                torch.cuda.empty_cache()

            updated_frames = torch.cat(updated_frames, dim=1)
            updated_masks = torch.cat(updated_masks, dim=1)
        else:
            b, t, _, _, _ = masks_dilated.size()
            prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
            updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
            updated_masks = updated_local_masks.view(b, t, 1, h, w)
            torch.cuda.empty_cache()

    ori_frames = frames_inp
    comp_frames = [None] * video_length

    neighbor_stride = neighbor_length // 2
    if video_length > subvideo_length:
        ref_num = subvideo_length // ref_stride
    else:
        ref_num = -1

    # ---- feature propagation + transformer ----
    for f in tqdm(range(0, video_length, neighbor_stride)):
        neighbor_ids = [
            i for i in range(max(0, f - neighbor_stride),
                                min(video_length, f + neighbor_stride + 1))
        ]
        ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
        selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
        selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
        selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
        selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])

        with torch.no_grad():
            # 1.0 indicates mask
            l_t = len(neighbor_ids)

            # pred_img = selected_imgs # results of image propagation
            pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)

            pred_img = pred_img.view(-1, 3, h, w)

            pred_img = (pred_img + 1) / 2
            pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
            binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
                0, 2, 3, 1).numpy().astype(np.uint8)
            for i in range(len(neighbor_ids)):
                idx = neighbor_ids[i]
                img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
                    + ori_frames[idx] * (1 - binary_masks[i])
                if comp_frames[idx] is None:
                    comp_frames[idx] = img
                else:
                    comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5

                comp_frames[idx] = comp_frames[idx].astype(np.uint8)

        torch.cuda.empty_cache()

    # save each frame
    for idx in range(video_length):
        f = comp_frames[idx]
        f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
        f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
        dst_img_path = output_dir.joinpath( f"{idx:08d}.png" )
        cv2.imwrite(str(dst_img_path), f)

    sys.path.remove(repo_path)