File size: 26,195 Bytes
d0ffe9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
import glob
import logging
import os
from pathlib import Path
import cv2
import numpy as np
import torch
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from PIL import Image
from segment_anything_hq import (SamPredictor, build_sam_vit_b,
build_sam_vit_h, build_sam_vit_l)
from segment_anything_hq.build_sam import build_sam_vit_t
from tqdm.rich import tqdm
logger = logging.getLogger(__name__)
build_sam_table={
"sam_hq_vit_l":build_sam_vit_l,
"sam_hq_vit_h":build_sam_vit_h,
"sam_hq_vit_b":build_sam_vit_b,
"sam_hq_vit_tiny":build_sam_vit_t,
}
# adapted from https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_demo.py
class MaskPredictor:
def __init__(self,model_config_path, model_checkpoint_path,device, sam_checkpoint, box_threshold=0.3, text_threshold=0.25 ):
self.groundingdino_model = None
self.sam_predictor = None
self.model_config_path = model_config_path
self.model_checkpoint_path = model_checkpoint_path
self.device = device
self.sam_checkpoint = sam_checkpoint
self.box_threshold = box_threshold
self.text_threshold = text_threshold
def load_groundingdino_model(self):
args = SLConfig.fromfile(self.model_config_path)
args.device = self.device
model = build_model(args)
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
#print(load_res)
_ = model.eval()
self.groundingdino_model = model
def load_sam_predictor(self):
s = Path(self.sam_checkpoint)
self.sam_predictor = SamPredictor(build_sam_table[ s.stem ](checkpoint=self.sam_checkpoint).to(self.device))
def transform_image(self,image_pil):
import groundingdino.datasets.transforms as T
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(self, image, caption, with_logits=True):
model = self.groundingdino_model
device = self.device
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def __call__(self, image_pil:Image, text_prompt):
if self.groundingdino_model is None:
self.load_groundingdino_model()
self.load_sam_predictor()
transformed_img = self.transform_image(image_pil)
# run grounding dino model
boxes_filt, pred_phrases = self.get_grounding_output(
transformed_img, text_prompt
)
if boxes_filt.shape[0] == 0:
logger.info(f"object not found")
w, h = image_pil.size
return np.zeros(shape=(1,h,w), dtype=bool)
img_array = np.array(image_pil)
self.sam_predictor.set_image(img_array)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, img_array.shape[:2]).to(self.device)
masks, _, _ = self.sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(self.device),
multimask_output = False,
)
result = None
for m in masks:
if result is None:
result = m
else:
result |= m
result = result.cpu().detach().numpy().copy()
return result
def load_mask_list(mask_dir, masked_area_list, mask_padding):
mask_frame_list = sorted(glob.glob( os.path.join(mask_dir, "[0-9]*.png"), recursive=False))
kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8)
for m in mask_frame_list:
cur = int(Path(m).stem)
tmp = np.asarray(Image.open(m))
if mask_padding < 0:
tmp = cv2.erode(tmp, kernel,iterations = 1)
elif mask_padding > 0:
tmp = cv2.dilate(tmp, kernel,iterations = 1)
masked_area_list[cur] = tmp[None,...]
return masked_area_list
def crop_mask_list(mask_list):
area_list = []
max_h = 0
max_w = 0
for m in mask_list:
if m is None:
area_list.append(None)
continue
m = m > 127
area = np.where(m[0] == True)
if area[0].size == 0:
area_list.append(None)
continue
ymin = min(area[0])
ymax = max(area[0])
xmin = min(area[1])
xmax = max(area[1])
h = ymax+1 - ymin
w = xmax+1 - xmin
max_h = max(max_h, h)
max_w = max(max_w, w)
area_list.append( (ymin, ymax, xmin, xmax) )
#crop = m[ymin:ymax+1,xmin:xmax+1]
logger.info(f"{max_h=}")
logger.info(f"{max_w=}")
border_h = mask_list[0].shape[1]
border_w = mask_list[0].shape[2]
mask_pos_list=[]
cropped_mask_list=[]
for a, m in zip(area_list, mask_list):
if m is None or a is None:
mask_pos_list.append(None)
cropped_mask_list.append(None)
continue
ymin,ymax,xmin,xmax = a
h = ymax+1 - ymin
w = xmax+1 - xmin
# H
diff_h = max_h - h
dh1 = diff_h//2
dh2 = diff_h - dh1
y1 = ymin - dh1
y2 = ymax + dh2
if y1 < 0:
y1 = 0
y2 = max_h-1
elif y2 >= border_h:
y1 = (border_h-1) - (max_h - 1)
y2 = (border_h-1)
# W
diff_w = max_w - w
dw1 = diff_w//2
dw2 = diff_w - dw1
x1 = xmin - dw1
x2 = xmax + dw2
if x1 < 0:
x1 = 0
x2 = max_w-1
elif x2 >= border_w:
x1 = (border_w-1) - (max_w - 1)
x2 = (border_w-1)
mask_pos_list.append( (int(x1),int(y1)) )
m = m[0][y1:y2+1,x1:x2+1]
cropped_mask_list.append( m[None,...] )
return cropped_mask_list, mask_pos_list, (max_h,max_w)
def crop_frames(pos_list, crop_size_hw, frame_dir):
h,w = crop_size_hw
for i,pos in tqdm(enumerate(pos_list),total=len(pos_list)):
filename = f"{i:08d}.png"
frame_path = frame_dir / filename
if not frame_path.is_file():
logger.info(f"{frame_path=} not found. skip")
continue
if pos is None:
continue
x, y = pos
tmp = np.asarray(Image.open(frame_path))
tmp = tmp[y:y+h,x:x+w,...]
Image.fromarray(tmp).save(frame_path)
def save_crop_info(mask_pos_list, crop_size_hw, frame_size_hw, save_path):
import json
pos_map = {}
for i, pos in enumerate(mask_pos_list):
if pos is not None:
pos_map[str(i)]=pos
info = {
"frame_height" : int(frame_size_hw[0]),
"frame_width" : int(frame_size_hw[1]),
"height": int(crop_size_hw[0]),
"width": int(crop_size_hw[1]),
"pos_map" : pos_map,
}
with open(save_path, mode="wt", encoding="utf-8") as f:
json.dump(info, f, ensure_ascii=False, indent=4)
def restore_position(mask_list, crop_info):
f_h = crop_info["frame_height"]
f_w = crop_info["frame_width"]
h = crop_info["height"]
w = crop_info["width"]
pos_map = crop_info["pos_map"]
for i in pos_map:
x,y = pos_map[i]
i = int(i)
m = mask_list[i]
if m is None:
continue
m = cv2.resize( m, (w,h) )
if len(m.shape) == 2:
m = m[...,None]
frame = np.zeros(shape=(f_h,f_w,m.shape[2]), dtype=np.uint8)
frame[y:y+h,x:x+w,...] = m
mask_list[i] = frame
return mask_list
def load_frame_list(frame_dir, frame_array_list, crop_info):
frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))
for f in frame_list:
cur = int(Path(f).stem)
frame_array_list[cur] = np.asarray(Image.open(f))
if not crop_info:
logger.info(f"crop_info is not exists -> skip restore")
return frame_array_list
for i,f in enumerate(frame_array_list):
if f is None:
continue
frame_array_list[i] = f
frame_array_list = restore_position(frame_array_list, crop_info)
return frame_array_list
def create_fg(mask_token, frame_dir, output_dir, output_mask_dir, masked_area_list,
box_threshold=0.3,
text_threshold=0.25,
bg_color=(0,255,0),
mask_padding=0,
groundingdino_config="config/GroundingDINO/GroundingDINO_SwinB_cfg.py",
groundingdino_checkpoint="data/models/GroundingDINO/groundingdino_swinb_cogcoor.pth",
sam_checkpoint="data/models/SAM/sam_hq_vit_l.pth",
device="cuda",
):
frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))
with torch.no_grad():
predictor = MaskPredictor(
model_config_path=groundingdino_config,
model_checkpoint_path=groundingdino_checkpoint,
device=device,
sam_checkpoint=sam_checkpoint,
box_threshold=box_threshold,
text_threshold=text_threshold,
)
if mask_padding != 0:
kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8)
kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask from {mask_token=}"):
frame = Path(frame)
file_name = frame.name
cur_frame_no = int(frame.stem)
img = Image.open(frame)
mask_array = predictor(img, mask_token)
mask_array = mask_array[0].astype(np.uint8) * 255
if mask_padding < 0:
mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1)
elif mask_padding > 0:
mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1)
mask_array = cv2.morphologyEx(mask_array.astype(np.uint8), cv2.MORPH_OPEN, kernel2)
mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT)
if masked_area_list[cur_frame_no] is not None:
masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...])
#masked_area_list[cur_frame_no] = masked_area_list[cur_frame_no] | mask_array[None,...]
else:
masked_area_list[cur_frame_no] = mask_array[None,...]
if output_mask_dir:
#mask_array2 = mask_array.astype(np.uint8).clip(0,1)
#mask_array2 *= 255
Image.fromarray(mask_array).save( output_mask_dir / file_name )
img_array = np.asarray(img).copy()
if bg_color is not None:
img_array[mask_array == 0] = bg_color
img = Image.fromarray(img_array)
img.save( output_dir / file_name )
return masked_area_list
def dilate_mask(masked_area_list, flow_mask_dilates=8, mask_dilates=5):
kernel = np.ones((flow_mask_dilates,flow_mask_dilates),np.uint8)
flow_masks = [ cv2.dilate(mask[0].astype(np.uint8),kernel,iterations = 1) for mask in masked_area_list ]
flow_masks = [ Image.fromarray(mask * 255) for mask in flow_masks ]
kernel = np.ones((mask_dilates,mask_dilates),np.uint8)
dilated_masks = [ cv2.dilate(mask[0].astype(np.uint8),kernel,iterations = 1) for mask in masked_area_list ]
dilated_masks = [ Image.fromarray(mask * 255) for mask in dilated_masks ]
return flow_masks, dilated_masks
# adapted from https://github.com/sczhou/ProPainter/blob/main/inference_propainter.py
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames, process_size, out_size
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
ref_index = []
if ref_num == -1:
for i in range(0, length, ref_stride):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
for i in range(start_idx, end_idx, ref_stride):
if i not in neighbor_ids:
if len(ref_index) > ref_num:
break
ref_index.append(i)
return ref_index
def create_bg(frame_dir, output_dir, masked_area_list,
use_half = True,
raft_iter = 20,
subvideo_length=80,
neighbor_length=10,
ref_stride=10,
device="cuda",
low_vram = False,
):
import sys
repo_path = Path("src/animatediff/repo/ProPainter").absolute()
repo_path = str(repo_path)
sys.path.append(repo_path)
from animatediff.repo.ProPainter.core.utils import to_tensors
from animatediff.repo.ProPainter.model.modules.flow_comp_raft import \
RAFT_bi
from animatediff.repo.ProPainter.model.propainter import InpaintGenerator
from animatediff.repo.ProPainter.model.recurrent_flow_completion import \
RecurrentFlowCompleteNet
from animatediff.repo.ProPainter.utils.download_util import \
load_file_from_url
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
model_dir = Path("data/models/ProPainter")
model_dir.mkdir(parents=True, exist_ok=True)
frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))
frames = [Image.open(f) for f in frame_list]
if low_vram:
org_size = frames[0].size
_w, _h = frames[0].size
if max(_w, _h) > 512:
_w = int(_w * 0.75)
_h = int(_h * 0.75)
frames, size, out_size = resize_frames(frames, (_w, _h))
out_size = org_size
masked_area_list = [m[0] for m in masked_area_list]
masked_area_list = [cv2.resize(m.astype(np.uint8), dsize=size) for m in masked_area_list]
masked_area_list = [ m>127 for m in masked_area_list]
masked_area_list = [m[None,...] for m in masked_area_list]
else:
frames, size, out_size = resize_frames(frames, None)
masked_area_list = [ m>127 for m in masked_area_list]
w, h = size
flow_masks,masks_dilated = dilate_mask(masked_area_list)
frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
model_dir=model_dir, progress=True, file_name=None)
fix_raft = RAFT_bi(ckpt_path, device)
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
model_dir=model_dir, progress=True, file_name=None)
fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in fix_flow_complete.parameters():
p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
model_dir=model_dir, progress=True, file_name=None)
model = InpaintGenerator(model_path=ckpt_path).to(device)
model.eval()
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
logger.info(f'\nProcessing: [{video_length} frames]...')
with torch.no_grad():
# ---- compute flow ----
if max(w,h) <= 640:
short_clip_len = 12
elif max(w,h) <= 720:
short_clip_len = 8
elif max(w,h) <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=raft_iter)
else:
flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = fix_raft(frames, iters=raft_iter)
torch.cuda.empty_cache()
if use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
fix_flow_complete = fix_flow_complete.half()
model = model.half()
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + subvideo_length)
pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
# ---- image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
ori_frames = frames_inp
comp_frames = [None] * video_length
neighbor_stride = neighbor_length // 2
if video_length > subvideo_length:
ref_num = subvideo_length // ref_stride
else:
ref_num = -1
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8)
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
# save each frame
for idx in range(video_length):
f = comp_frames[idx]
f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
dst_img_path = output_dir.joinpath( f"{idx:08d}.png" )
cv2.imwrite(str(dst_img_path), f)
sys.path.remove(repo_path)
|