Spaces:
Running
Running
<html> | |
<head> | |
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> | |
<title>Candle YOLOv8 Rust/WASM</title> | |
</head> | |
<body></body> | |
</html> | |
<html> | |
<head> | |
<meta charset="UTF-8" /> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> | |
<style> | |
@import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); | |
html, | |
body { | |
font-family: "Source Sans 3", sans-serif; | |
} | |
code, | |
output, | |
select, | |
pre { | |
font-family: "Source Code Pro", monospace; | |
} | |
</style> | |
<script src="https://cdn.tailwindcss.com"></script> | |
<script | |
src="https://cdn.jsdelivr.net/gh/huggingface/hub-js-utils/share-canvas.js" | |
type="module" | |
></script> | |
<script type="module"> | |
const MODEL_BASEURL = | |
"https://huggingface.co./lmz/candle-yolo-v8/resolve/main/"; | |
const MODELS = { | |
yolov8n: { | |
model_size: "n", | |
url: "yolov8n.safetensors", | |
}, | |
yolov8s: { | |
model_size: "s", | |
url: "yolov8s.safetensors", | |
}, | |
yolov8m: { | |
model_size: "m", | |
url: "yolov8m.safetensors", | |
}, | |
yolov8l: { | |
model_size: "l", | |
url: "yolov8l.safetensors", | |
}, | |
yolov8x: { | |
model_size: "x", | |
url: "yolov8x.safetensors", | |
}, | |
yolov8n_pose: { | |
model_size: "n", | |
url: "yolov8n-pose.safetensors", | |
}, | |
yolov8s_pose: { | |
model_size: "s", | |
url: "yolov8s-pose.safetensors", | |
}, | |
yolov8m_pose: { | |
model_size: "m", | |
url: "yolov8m-pose.safetensors", | |
}, | |
yolov8l_pose: { | |
model_size: "l", | |
url: "yolov8l-pose.safetensors", | |
}, | |
yolov8x_pose: { | |
model_size: "x", | |
url: "yolov8x-pose.safetensors", | |
}, | |
}; | |
const COCO_PERSON_SKELETON = [ | |
[4, 0], // head | |
[3, 0], | |
[16, 14], // left lower leg | |
[14, 12], // left upper leg | |
[6, 12], // left torso | |
[6, 5], // top torso | |
[6, 8], // upper arm | |
[8, 10], // lower arm | |
[1, 2], // head | |
[1, 3], // right head | |
[2, 4], // left head | |
[3, 5], // right neck | |
[4, 6], // left neck | |
[5, 7], // right upper arm | |
[7, 9], // right lower arm | |
[5, 11], // right torso | |
[11, 12], // bottom torso | |
[11, 13], // right upper leg | |
[13, 15], // right lower leg | |
]; | |
// init web worker | |
const yoloWorker = new Worker("./yoloWorker.js", { type: "module" }); | |
let hasImage = false; | |
//add event listener to image examples | |
document.querySelector("#image-select").addEventListener("click", (e) => { | |
const target = e.target; | |
if (target.nodeName === "IMG") { | |
const href = target.src; | |
drawImageCanvas(href); | |
} | |
}); | |
//add event listener to file input | |
document.querySelector("#file-upload").addEventListener("change", (e) => { | |
const target = e.target; | |
if (target.files.length > 0) { | |
const href = URL.createObjectURL(target.files[0]); | |
drawImageCanvas(href); | |
} | |
}); | |
// add event listener to drop-area | |
const dropArea = document.querySelector("#drop-area"); | |
dropArea.addEventListener("dragenter", (e) => { | |
e.preventDefault(); | |
dropArea.classList.add("border-blue-700"); | |
}); | |
dropArea.addEventListener("dragleave", (e) => { | |
e.preventDefault(); | |
dropArea.classList.remove("border-blue-700"); | |
}); | |
dropArea.addEventListener("dragover", (e) => { | |
e.preventDefault(); | |
}); | |
dropArea.addEventListener("drop", (e) => { | |
e.preventDefault(); | |
dropArea.classList.remove("border-blue-700"); | |
const url = e.dataTransfer.getData("text/uri-list"); | |
const files = e.dataTransfer.files; | |
if (files.length > 0) { | |
const href = URL.createObjectURL(files[0]); | |
drawImageCanvas(href); | |
} else if (url) { | |
drawImageCanvas(url); | |
} | |
}); | |
document.querySelector("#clear-btn").addEventListener("click", () => { | |
drawImageCanvas(); | |
}); | |
function drawImageCanvas(imgURL) { | |
const canvas = document.querySelector("#canvas"); | |
const canvasResult = document.querySelector("#canvas-result"); | |
canvasResult | |
.getContext("2d") | |
.clearRect(0, 0, canvas.width, canvas.height); | |
const ctx = canvas.getContext("2d"); | |
ctx.clearRect(0, 0, canvas.width, canvas.height); | |
document.querySelector("#share-btn").classList.add("invisible"); | |
document.querySelector("#clear-btn").classList.add("invisible"); | |
document.querySelector("#detect").disabled = true; | |
hasImage = false; | |
canvas.parentElement.style.height = "auto"; | |
if (imgURL && imgURL !== "") { | |
const img = new Image(); | |
img.crossOrigin = "anonymous"; | |
img.onload = () => { | |
canvas.width = img.width; | |
canvas.height = img.height; | |
ctx.drawImage(img, 0, 0); | |
canvas.parentElement.style.height = canvas.offsetHeight + "px"; | |
hasImage = true; | |
document.querySelector("#detect").disabled = false; | |
document.querySelector("#clear-btn").classList.remove("invisible"); | |
}; | |
img.src = imgURL; | |
} | |
} | |
async function classifyImage( | |
imageURL, // URL of image to classify | |
modelID, // ID of model to use | |
modelURL, // URL to model file | |
modelSize, // size of model | |
confidence, // confidence threshold | |
iou_threshold, // IoU threshold | |
updateStatus // function receives status updates | |
) { | |
return new Promise((resolve, reject) => { | |
yoloWorker.postMessage({ | |
imageURL, | |
modelID, | |
modelURL, | |
modelSize, | |
confidence, | |
iou_threshold, | |
}); | |
yoloWorker.addEventListener("message", (event) => { | |
if ("status" in event.data) { | |
updateStatus(event.data.status); | |
} | |
if ("error" in event.data) { | |
reject(new Error(event.data.error)); | |
} | |
if (event.data.status === "complete") { | |
resolve(event.data); | |
} | |
}); | |
}); | |
} | |
// add event listener to detect button | |
document.querySelector("#detect").addEventListener("click", async () => { | |
if (!hasImage) { | |
return; | |
} | |
const modelID = document.querySelector("#model").value; | |
const modelURL = MODEL_BASEURL + MODELS[modelID].url; | |
const modelSize = MODELS[modelID].model_size; | |
const confidence = parseFloat( | |
document.querySelector("#confidence").value | |
); | |
const iou_threshold = parseFloat( | |
document.querySelector("#iou_threshold").value | |
); | |
const canvasInput = document.querySelector("#canvas"); | |
const canvas = document.querySelector("#canvas-result"); | |
canvas.width = canvasInput.width; | |
canvas.height = canvasInput.height; | |
const scale = canvas.width / canvas.offsetWidth; | |
const ctx = canvas.getContext("2d"); | |
ctx.drawImage(canvasInput, 0, 0); | |
const imageURL = canvas.toDataURL(); | |
const results = await await classifyImage( | |
imageURL, | |
modelID, | |
modelURL, | |
modelSize, | |
confidence, | |
iou_threshold, | |
updateStatus | |
); | |
const { output } = results; | |
ctx.lineWidth = 1 + 2 * scale; | |
ctx.strokeStyle = "#3c8566"; | |
ctx.fillStyle = "#0dff9a"; | |
const fontSize = 14 * scale; | |
ctx.font = `${fontSize}px sans-serif`; | |
for (const detection of output) { | |
// check keypoint for pose model data | |
let xmin, xmax, ymin, ymax, label, confidence, keypoints; | |
if ("keypoints" in detection) { | |
xmin = detection.xmin; | |
xmax = detection.xmax; | |
ymin = detection.ymin; | |
ymax = detection.ymax; | |
confidence = detection.confidence; | |
keypoints = detection.keypoints; | |
} else { | |
const [_label, bbox] = detection; | |
label = _label; | |
xmin = bbox.xmin; | |
xmax = bbox.xmax; | |
ymin = bbox.ymin; | |
ymax = bbox.ymax; | |
confidence = bbox.confidence; | |
} | |
const [x, y, w, h] = [xmin, ymin, xmax - xmin, ymax - ymin]; | |
const text = `${label ? label + " " : ""}${confidence.toFixed(2)}`; | |
const width = ctx.measureText(text).width; | |
ctx.fillStyle = "#3c8566"; | |
ctx.fillRect(x - 2, y - fontSize, width + 4, fontSize); | |
ctx.fillStyle = "#e3fff3"; | |
ctx.strokeRect(x, y, w, h); | |
ctx.fillText(text, x, y - 2); | |
if (keypoints) { | |
ctx.save(); | |
ctx.fillStyle = "magenta"; | |
ctx.strokeStyle = "yellow"; | |
for (const keypoint of keypoints) { | |
const { x, y } = keypoint; | |
ctx.beginPath(); | |
ctx.arc(x, y, 3, 0, 2 * Math.PI); | |
ctx.fill(); | |
} | |
ctx.beginPath(); | |
for (const [xid, yid] of COCO_PERSON_SKELETON) { | |
//draw line between skeleton keypoitns | |
if (keypoints[xid] && keypoints[yid]) { | |
ctx.moveTo(keypoints[xid].x, keypoints[xid].y); | |
ctx.lineTo(keypoints[yid].x, keypoints[yid].y); | |
} | |
} | |
ctx.stroke(); | |
ctx.restore(); | |
} | |
} | |
}); | |
function updateStatus(statusMessage) { | |
const button = document.querySelector("#detect"); | |
if (statusMessage === "detecting") { | |
button.disabled = true; | |
button.classList.add("bg-blue-700"); | |
button.classList.remove("bg-blue-950"); | |
button.textContent = "Predicting..."; | |
} else if (statusMessage === "complete") { | |
button.disabled = false; | |
button.classList.add("bg-blue-950"); | |
button.classList.remove("bg-blue-700"); | |
button.textContent = "Predict"; | |
document.querySelector("#share-btn").classList.remove("invisible"); | |
} | |
} | |
document.querySelector("#share-btn").addEventListener("click", () => { | |
shareToCommunity( | |
"lmz/candle-yolo", | |
"Candle + YOLOv8", | |
"YOLOv8 with [Candle](https://github.com/huggingface/candle)", | |
"canvas-result", | |
"share-btn" | |
); | |
}); | |
</script> | |
</head> | |
<body class="container max-w-4xl mx-auto p-4"> | |
<main class="grid grid-cols-1 gap-8 relative"> | |
<span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> | |
<div> | |
<h1 class="text-5xl font-bold">Candle YOLOv8</h1> | |
<h2 class="text-2xl font-bold">Rust/WASM Demo</h2> | |
<p class="max-w-lg"> | |
This demo showcases object detection and pose estimation models in | |
your browser using Rust/WASM. It utilizes | |
<a | |
href="https://huggingface.co./lmz/candle-yolo-v8" | |
target="_blank" | |
class="underline hover:text-blue-500 hover:no-underline" | |
> | |
safetensor's YOLOv8 models | |
</a> | |
and a WASM runtime built with | |
<a | |
href="https://github.com/huggingface/candle/" | |
target="_blank" | |
class="underline hover:text-blue-500 hover:no-underline" | |
>Candle </a | |
>. | |
</p> | |
<p> | |
To run pose estimation, select a yolo pose model from the dropdown | |
</p> | |
</div> | |
<div> | |
<label for="model" class="font-medium">Models Options: </label> | |
<select | |
id="model" | |
class="border-2 border-gray-500 rounded-md font-light" | |
> | |
<option value="yolov8n" selected>yolov8n (6.37 MB)</option> | |
<option value="yolov8s">yolov8s (22.4 MB)</option> | |
<option value="yolov8m">yolov8m (51.9 MB)</option> | |
<option value="yolov8l">yolov8l (87.5 MB)</option> | |
<option value="yolov8x">yolov8x (137 MB)</option> | |
<!-- Pose models --> | |
<option value="yolov8n_pose">yolov8n_pose (6.65 MB)</option> | |
<option value="yolov8s_pose">yolov8s_pose (23.3 MB)</option> | |
<option value="yolov8m_pose">yolov8m_pose (53 MB)</option> | |
<option value="yolov8l_pose">yolov8l_pose (89.1 MB)</option> | |
<option value="yolov8x_pose">yolov8x_pose (139 MB)</option> | |
</select> | |
</div> | |
<div> | |
<button | |
id="detect" | |
disabled | |
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 px-4 rounded disabled:bg-gray-300 disabled:cursor-not-allowed" | |
> | |
Predict | |
</button> | |
</div> | |
<!-- drag and drop area --> | |
<div class="relative"> | |
<div class="py-1"> | |
<button | |
id="clear-btn" | |
class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center ml-auto invisible" | |
> | |
<svg | |
class="" | |
xmlns="http://www.w3.org/2000/svg" | |
viewBox="0 0 13 12" | |
height="1em" | |
> | |
<path | |
d="M1.6.7 12 11.1M12 .7 1.6 11.1" | |
stroke="#2E3036" | |
stroke-width="2" | |
/> | |
</svg> | |
Clear image | |
</button> | |
</div> | |
<div | |
id="drop-area" | |
class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative aspect-video w-full overflow-hidden" | |
> | |
<div | |
class="flex flex-col items-center justify-center space-y-1 text-center" | |
> | |
<svg | |
width="25" | |
height="25" | |
viewBox="0 0 25 25" | |
fill="none" | |
xmlns="http://www.w3.org/2000/svg" | |
> | |
<path | |
d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" | |
fill="#000" | |
/> | |
</svg> | |
<div class="flex text-sm text-gray-600"> | |
<label | |
for="file-upload" | |
class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700" | |
> | |
<span>Drag and drop your image here</span> | |
<span class="block text-xs">or</span> | |
<span class="block text-xs">Click to upload</span> | |
</label> | |
</div> | |
<input | |
id="file-upload" | |
name="file-upload" | |
type="file" | |
class="sr-only" | |
/> | |
</div> | |
<canvas | |
id="canvas" | |
class="absolute pointer-events-none w-full" | |
></canvas> | |
<canvas | |
id="canvas-result" | |
class="absolute pointer-events-none w-full" | |
></canvas> | |
</div> | |
<div class="text-right py-2"> | |
<button | |
id="share-btn" | |
class="bg-white rounded-md hover:outline outline-orange-200 disabled:opacity-50 invisible" | |
> | |
<img | |
src="https://huggingface.co./datasets/huggingface/badges/raw/main/share-to-community-sm.svg" | |
/> | |
</button> | |
</div> | |
</div> | |
<div> | |
<div class="flex gap-3 items-center" id="image-select"> | |
<h3 class="font-medium">Examples:</h3> | |
<img | |
src="https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" | |
class="cursor-pointer w-24 h-24 object-cover" | |
/> | |
<img | |
src="https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" | |
class="cursor-pointer w-24 h-24 object-cover" | |
/> | |
<img | |
src="https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" | |
class="cursor-pointer w-24 h-24 object-cover" | |
/> | |
</div> | |
</div> | |
<div> | |
<div class="grid grid-cols-3 max-w-md items-center gap-3"> | |
<label class="text-sm font-medium" for="confidence" | |
>Confidence Threshold</label | |
> | |
<input | |
type="range" | |
id="confidence" | |
name="confidence" | |
min="0" | |
max="1" | |
step="0.01" | |
value="0.25" | |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" | |
/> | |
<output | |
class="text-xs font-light px-1 py-1 border border-gray-700 rounded-md w-min" | |
>0.25</output | |
> | |
<label class="text-sm font-medium" for="iou_threshold" | |
>IoU Threshold</label | |
> | |
<input | |
type="range" | |
id="iou_threshold" | |
name="iou_threshold" | |
min="0" | |
max="1" | |
step="0.01" | |
value="0.45" | |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" | |
/> | |
<output | |
class="font-extralight text-xs px-1 py-1 border border-gray-700 rounded-md w-min" | |
>0.45</output | |
> | |
</div> | |
</div> | |
</main> | |
</body> | |
</html> | |