jiminHuang's picture
Update app.py
1604c37 verified
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Plutus 8B instruct
Plutus 8B is The Fin AI's latest iteration of open LLMs.
This is a demo of [`TheFinAI/plutus-8B-instruct`](https://huggingface.co./TheFinAI/plutus-8B-instruct), fine-tuned for instruction following.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Plutus 8B instruct</h1>
</div>
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "TheFinAI/plutus-8B-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Γεια σας! Πώς πηγαίνουν οι επενδύσεις σας σήμερα;"],
["Μπορείτε να μου εξηγήσετε συνοπτικά τι είναι το ελληνικό χρηματιστήριο;"],
["Περιγράψτε τη σημασία της Ευρωπαϊκής Κεντρικής Τράπεζας για την ελληνική οικονομία σε μία πρόταση."],
["Πόσο χρόνο χρειάζεται ένας επενδυτής για να κατανοήσει πλήρως την ελληνική αγορά ομολόγων;"],
["Γράψτε ένα άρθρο 100 λέξεων σχετικά με 'Τα οφέλη της Τεχνητής Νοημοσύνης στη Χρηματοοικονομική Ανάλυση στην Ελλάδα'."],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css_paths="style.css",
fill_height=True,
chatbot=chatbot,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()