|
import gradio as gr |
|
import torch |
|
import modin.pandas as pd |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
if torch.cuda.is_available(): |
|
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000} |
|
torch.cuda.max_memory_allocated(device=device) |
|
torch.cuda.empty_cache() |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
torch.cuda.empty_cache() |
|
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") |
|
refiner.enable_xformers_memory_efficient_attention() |
|
refiner.enable_sequential_cpu_offload() |
|
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True) |
|
refiner = refiner.to(device) |
|
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
def genie (prompt, negative_prompt, height, width, scale, steps, seed, prompt_2, negative_prompt_2, high_noise_frac): |
|
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) |
|
int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images |
|
image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, denoising_start=high_noise_frac).images[0] |
|
return image |
|
|
|
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), |
|
gr.Textbox(label='What you Do Not want the AI to generate.'), |
|
gr.Slider(512, 1024, 768, step=128, label='Height'), |
|
gr.Slider(512, 1024, 768, step=128, label='Width'), |
|
gr.Slider(1, 15, 10, label='Guidance Scale'), |
|
gr.Slider(25, maximum=50, value=25, step=1, label='Number of Iterations'), |
|
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True), |
|
gr.Textbox(label='Embedded Prompt'), |
|
gr.Textbox(label='Embedded Negative Prompt'), |
|
gr.Slider(minimum=.7, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')], |
|
outputs='image', |
|
title="Stable Diffusion XL 1.0 CPU or GPU", |
|
description="SDXL 1.0 CPU or GPU. Currently running on CPU. <br><br><b>WARNING:</b> Extremely Slow. 65s/Iteration. Expect 25-50mins an image for 25-50 iterations respectively. This model is capable of producing NSFW (Softcore) images.", |
|
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |