Spaces:
Running
on
Zero
Running
on
Zero
envs
Browse files- app.py +1 -1
- pipelines/pipeline_imagecoductor.py +1 -1
app.py
CHANGED
@@ -339,7 +339,7 @@ class ImageConductor:
|
|
339 |
trajs_video = vis_flow_to_video(controlnet_flows, num_frames=self.model_length) # T-1 x H x W x 3
|
340 |
torchvision.io.write_video(f'{output_dir}/control_flows/sample-{id}-train_flow.mp4', trajs_video, fps=8, video_codec='h264', options={'crf': '10'})
|
341 |
controlnet_flows = torch.from_numpy(controlnet_flows)[None][:, :self.model_length, ...]
|
342 |
-
controlnet_flows = rearrange(controlnet_flows, "b f h w c-> b c f h w").to(device)
|
343 |
|
344 |
dreambooth_model_path = DREAM_BOOTH.get(personalized, '')
|
345 |
lora_model_path = LORA.get(personalized, '')
|
|
|
339 |
trajs_video = vis_flow_to_video(controlnet_flows, num_frames=self.model_length) # T-1 x H x W x 3
|
340 |
torchvision.io.write_video(f'{output_dir}/control_flows/sample-{id}-train_flow.mp4', trajs_video, fps=8, video_codec='h264', options={'crf': '10'})
|
341 |
controlnet_flows = torch.from_numpy(controlnet_flows)[None][:, :self.model_length, ...]
|
342 |
+
controlnet_flows = rearrange(controlnet_flows, "b f h w c-> b c f h w").float().to(device)
|
343 |
|
344 |
dreambooth_model_path = DREAM_BOOTH.get(personalized, '')
|
345 |
lora_model_path = LORA.get(personalized, '')
|
pipelines/pipeline_imagecoductor.py
CHANGED
@@ -464,7 +464,7 @@ class ImageConductorPipeline(DiffusionPipeline):
|
|
464 |
print("t", t.device)
|
465 |
|
466 |
|
467 |
-
|
468 |
|
469 |
img_down_block_additional_residuals, img_mid_block_additional_residuals = self.image_controlnet(
|
470 |
controlnet_noisy_latents, t,
|
|
|
464 |
print("t", t.device)
|
465 |
|
466 |
|
467 |
+
print("self.image_controlnet", self.image_controlnet.controlnet_mid_block.weight.device)
|
468 |
|
469 |
img_down_block_additional_residuals, img_mid_block_additional_residuals = self.image_controlnet(
|
470 |
controlnet_noisy_latents, t,
|