File size: 2,242 Bytes
8a09a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from pathlib import Path

from loguru import logger

from dialoggen.dialoggen_demo import DialogGen
from hydit.config import get_args
from hydit.inference import End2End


def inferencer():
    args = get_args()
    models_root_path = Path(args.model_root)
    if not models_root_path.exists():
        raise ValueError(f"`models_root` not exists: {models_root_path}")

    # Load models
    gen = End2End(args, models_root_path)

    # Try to enhance prompt
    if args.enhance:
        logger.info("Loading DialogGen model (for prompt enhancement)...")
        enhancer = DialogGen(str(models_root_path / "dialoggen"))
        logger.info("DialogGen model loaded.")
    else:
        enhancer = None

    return args, gen, enhancer


if __name__ == "__main__":
    args, gen, enhancer = inferencer()

    if enhancer:
        logger.info("Prompt Enhancement...")
        success, enhanced_prompt = enhancer(args.prompt)
        if not success:
            logger.info("Sorry, the prompt is not compliant, refuse to draw.")
            exit()
        logger.info(f"Enhanced prompt: {enhanced_prompt}")
    else:
        enhanced_prompt = None

    # Run inference
    logger.info("Generating images...")
    height, width = args.image_size
    results = gen.predict(args.prompt,
                          height=height,
                          width=width,
                          seed=args.seed,
                          enhanced_prompt=enhanced_prompt,
                          negative_prompt=args.negative,
                          infer_steps=args.infer_steps,
                          guidance_scale=args.cfg_scale,
                          batch_size=args.batch_size,
                          src_size_cond=args.size_cond,
                          )
    images = results['images']

    # Save images
    save_dir = Path('results')
    save_dir.mkdir(exist_ok=True)
    # Find the first available index
    all_files = list(save_dir.glob('*.png'))
    if all_files:
        start = max([int(f.stem) for f in all_files]) + 1
    else:
        start = 0

    for idx, pil_img in enumerate(images):
        save_path = save_dir / f"{idx + start}.png"
        pil_img.save(save_path)
        logger.info(f"Save to {save_path}")