|
import pandas as pd |
|
import PIL |
|
from PIL import Image |
|
from PIL import ImageDraw |
|
import gradio as gr |
|
import torch |
|
import easyocr |
|
|
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'english.png') |
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/thai.jpg', 'thai.jpg') |
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/french.jpg', 'french.jpg') |
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg') |
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg') |
|
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/korean.png', 'korean.png') |
|
torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg') |
|
|
|
def draw_boxes(image, bounds, color='yellow', width=2): |
|
draw = ImageDraw.Draw(image) |
|
for bound in bounds: |
|
p0, p1, p2, p3 = bound[0] |
|
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) |
|
return image |
|
|
|
def inference(img, lang): |
|
reader = easyocr.Reader(lang) |
|
bounds = reader.readtext(img.name) |
|
im = PIL.Image.open(img.name) |
|
draw_boxes(im, bounds) |
|
im.save('result.jpg') |
|
return ['result.jpg', pd.DataFrame(bounds).iloc[: , 1:]] |
|
|
|
title = 'EasyOCR' |
|
description = 'Gradio demo for EasyOCR. EasyOCR demo supports 80+ languages.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.' |
|
article = "<p style='text-align: center'><a href='https://www.jaided.ai/easyocr/'>Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.</a> | <a href='https://github.com/JaidedAI/EasyOCR'>Github Repo</a></p>" |
|
examples = [['english.png',['en']],['thai.jpg',['th']],['french.jpg',['fr', 'en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['korean.png',['ko', 'en']],['Hindi.jpeg',['hi', 'en']]] |
|
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" |
|
choices = [ |
|
"abq", |
|
"ady", |
|
"af", |
|
"ang", |
|
"ar", |
|
"as", |
|
"ava", |
|
"az", |
|
"be", |
|
"bg", |
|
"bh", |
|
"bho", |
|
"bn", |
|
"bs", |
|
"ch_sim", |
|
"ch_tra", |
|
"che", |
|
"cs", |
|
"cy", |
|
"da", |
|
"dar", |
|
"de", |
|
"en", |
|
"es", |
|
"et", |
|
"fa", |
|
"fr", |
|
"ga", |
|
"gom", |
|
"hi", |
|
"hr", |
|
"hu", |
|
"id", |
|
"inh", |
|
"is", |
|
"it", |
|
"ja", |
|
"kbd", |
|
"kn", |
|
"ko", |
|
"ku", |
|
"la", |
|
"lbe", |
|
"lez", |
|
"lt", |
|
"lv", |
|
"mah", |
|
"mai", |
|
"mi", |
|
"mn", |
|
"mr", |
|
"ms", |
|
"mt", |
|
"ne", |
|
"new", |
|
"nl", |
|
"no", |
|
"oc", |
|
"pi", |
|
"pl", |
|
"pt", |
|
"ro", |
|
"ru", |
|
"rs_cyrillic", |
|
"rs_latin", |
|
"sck", |
|
"sk", |
|
"sl", |
|
"sq", |
|
"sv", |
|
"sw", |
|
"ta", |
|
"tab", |
|
"te", |
|
"th", |
|
"tjk", |
|
"tl", |
|
"tr", |
|
"ug", |
|
"uk", |
|
"ur", |
|
"uz", |
|
"vi" |
|
] |
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type='file', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='language')], |
|
[gr.outputs.Image(type='file', label='Output'), gr.outputs.Dataframe(headers=['text', 'confidence'])], |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
css=css, |
|
enable_queue=True |
|
).launch(debug=True) |