Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import gradio as gr | |
import pandas as pd | |
import os | |
from tensorflow.keras.layers import TextVectorization | |
df = pd.read_csv('train.csv') | |
X = df['comment_text'] | |
y = df[df.columns[2:]].values | |
MAX_FEATURES = 200000 # number of words in the vocab | |
vectorizer = TextVectorization(max_tokens=MAX_FEATURES, | |
output_sequence_length=1800, | |
output_mode='int') | |
vectorizer.adapt(X.values) | |
model = tf.keras.models.load_model('hate_speech.h5') | |
def score_comment(comment): | |
vectorized_comment = vectorizer([comment]) | |
results = model.predict(vectorized_comment) | |
for idx, col in enumerate(df.columns[2:]): | |
if results[0][idx]>0.5: | |
return 'Hate Speech detected' | |
return 'No hate speech detected' | |
interface = gr.Interface(fn=score_comment, | |
inputs=gr.Textbox(lines=2, placeholder='Comment to score'), | |
outputs='text') | |
interface.launch(share=True) |