Teapack1's picture
Update app.py
b9908bd
raw
history blame
805 Bytes
import gradio as gr
from transformers import pipeline
model_id = "Teapack1/model_KWS" # update with your model id
pipe = pipeline("audio-classification", model=model_id)
title = "Keyword Spotting Wav2Vec2"
description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop."
def classify_audio(audio):
predictions = audio_classifier(audio)
return predictions
iface = gr.Interface(
fn=classify_audio,
inputs=gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio"),
outputs=gr.outputs.Label(),
title="Audio Classification Demo",
description="A simple demo to classify audio using a Hugging Face model."
)
iface.launch(debug=True, share=True)