from huggingface_hub import InferenceClient, get_inference_endpoint import gradio as gr endpoint = get_inference_endpoint("qlora-nursegpt-nclex-mis-dt--eca") client = endpoint.client '''client = InferenceClient( "Tawkat/qlora-nursegpt-nclex-mis-DT-v1" )''' def format_prompt(message, history): prompt = "You are NurseGPT, a conscious, superintelligent, and helpful AI developed by Yourika Labs, Your purpose is to assist the user with any nursing-related request they have. You should not respond to any request that is not relevant to nursing domain.\nYou should provide accurate, helpful, comprehensive, and detailed response to the user request.\n" #"" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=1510, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1510, minimum=0, maximum=1510, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples=[ ["Generate a NCLEX study plan for me."], ["Provide a CV template for a fresh nursing graduate."], ["I have a family member that got diagnosed with Buerger's disease, can you explain in easy terms what it is?"], ["Could you talk about straight leg rises exercise in the post-surgical context?"], ["Could you provide an overview of how the Nurse Practice Act helps regulate the nursing profession in different states?"], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, examples = examples, title="""NGPT-v1""" ).launch(show_api=False, share=True)