nGPT-v1 / app.py
Tawkat's picture
Update app.py
1035736 verified
raw
history blame
3.25 kB
from huggingface_hub import InferenceClient, get_inference_endpoint
import gradio as gr
endpoint = get_inference_endpoint("qlora-nursegpt-nclex-mis-dt--eca")
client = endpoint.client
'''client = InferenceClient(
"Tawkat/qlora-nursegpt-nclex-mis-DT-v1"
)'''
def format_prompt(message, history):
prompt = "You are NurseGPT, a conscious, superintelligent, and helpful AI developed by Yourika Labs, Your purpose is to assist the user with any nursing-related request they have. You should not respond to any request that is not relevant to nursing domain.\nYou should provide accurate, helpful, comprehensive, and detailed response to the user request.\n" #"<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=1510, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1510,
minimum=0,
maximum=1510,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[
["Generate a NCLEX study plan for me."],
["Provide a CV template for a fresh nursing graduate."],
["I have a family member that got diagnosed with Buerger's disease, can you explain in easy terms what it is?"],
["Could you talk about straight leg rises exercise in the post-surgical context?"],
["Could you provide an overview of how the Nurse Practice Act helps regulate the nursing profession in different states?"],
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
examples = examples,
title="""NGPT-v1"""
).launch(show_api=False, share=True)