import os import zipfile import numpy as np import torch from transformers import ViTForImageClassification, AdamW import nibabel as nib from PIL import Image from torch.utils.data import Dataset, DataLoader import streamlit as st # Function to extract zip files def extract_zip(zip_file, extract_to): with zipfile.ZipFile(zip_file, 'r') as zip_ref: zip_ref.extractall(extract_to) # Preprocess images def preprocess_image(image_path): ext = os.path.splitext(image_path)[-1].lower() if ext in ['.nii', '.nii.gz']: nii_image = nib.load(image_path) image_data = nii_image.get_fdata() image_tensor = torch.tensor(image_data).float() if len(image_tensor.shape) == 3: image_tensor = image_tensor.unsqueeze(0) elif ext in ['.jpg', '.jpeg']: img = Image.open(image_path).convert('RGB').resize((224, 224)) img_np = np.array(img) image_tensor = torch.tensor(img_np).permute(2, 0, 1).float() else: raise ValueError(f"Unsupported format: {ext}") image_tensor /= 255.0 # Normalize to [0, 1] return image_tensor # Prepare dataset def prepare_dataset(extracted_folder): # Ensure the path exists neuronii_path = os.path.join(extracted_folder, "neuroniiimages") if not os.path.exists(neuronii_path): raise FileNotFoundError(f"The folder neuroniiimages does not exist in the extracted folder: {neuronii_path}") image_paths = [] labels = [] for disease_folder in ['alzheimers_dataset', 'parkinsons_dataset', 'MSjpg']: folder_path = os.path.join(neuronii_path, disease_folder) # Check if the subfolder exists if not os.path.exists(folder_path): raise FileNotFoundError(f"The folder {disease_folder} does not exist at path: {folder_path}") label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder] for img_file in os.listdir(folder_path): if img_file.endswith(('.nii', '.jpg', '.jpeg')): image_paths.append(os.path.join(folder_path, img_file)) labels.append(label) return image_paths, labels # Custom Dataset class class CustomImageDataset(Dataset): def __init__(self, image_paths, labels): self.image_paths = image_paths self.labels = labels def __len__(self): return len(self.image_paths) def __getitem__(self, idx): image = preprocess_image(self.image_paths[idx]) label = self.labels[idx] return image, label # Training function def fine_tune_model(train_loader): model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3) model.train() optimizer = AdamW(model.parameters(), lr=1e-4) criterion = torch.nn.CrossEntropyLoss() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) for epoch in range(10): running_loss = 0.0 for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(pixel_values=images).logits loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) # Streamlit UI for Fine-tuning st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases") # Provide the correct zip file URL zip_file_url = "https://huggingface.co./spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/neuroniiimages.zip" if st.button("Start Training"): extraction_dir = "extracted_files" os.makedirs(extraction_dir, exist_ok=True) # Download the zip file (this is a placeholder; use requests or any other method to download the zip file) zip_file = "neuroniiimages.zip" # Assuming you downloaded it with this name # Extract zip file extract_zip(zip_file, extraction_dir) # Prepare dataset image_paths, labels = prepare_dataset(extraction_dir) dataset = CustomImageDataset(image_paths, labels) train_loader = DataLoader(dataset, batch_size=32, shuffle=True) # Fine-tune the model final_loss = fine_tune_model(train_loader) st.write(f"Training Complete with Final Loss: {final_loss}")