Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import zipfile
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from transformers import ViTForImageClassification, AdamW
|
@@ -8,6 +9,12 @@ from PIL import Image
|
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Function to extract zip file
|
12 |
def extract_zip(zip_file, extract_to):
|
13 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
@@ -86,14 +93,115 @@ def fine_tune_model(train_loader):
|
|
86 |
# Streamlit UI for Fine-tuning
|
87 |
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
if st.button("Start Training"):
|
92 |
extraction_dir = "extracted_files"
|
|
|
93 |
os.makedirs(extraction_dir, exist_ok=True)
|
94 |
|
|
|
|
|
|
|
|
|
95 |
# Extract the zip file
|
96 |
-
|
|
|
97 |
|
98 |
# Prepare dataset
|
99 |
image_paths, labels = prepare_dataset(extraction_dir)
|
@@ -101,8 +209,32 @@ if st.button("Start Training"):
|
|
101 |
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
102 |
|
103 |
# Fine-tune the model
|
|
|
104 |
final_loss = fine_tune_model(train_loader)
|
105 |
st.write(f"Training Complete with Final Loss: {final_loss}")
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
|
|
1 |
import os
|
2 |
import zipfile
|
3 |
+
import requests
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from transformers import ViTForImageClassification, AdamW
|
|
|
9 |
from torch.utils.data import Dataset, DataLoader
|
10 |
import streamlit as st
|
11 |
|
12 |
+
# Function to download the zip file from the URL
|
13 |
+
def download_zip(url, save_path):
|
14 |
+
response = requests.get(url)
|
15 |
+
with open(save_path, 'wb') as f:
|
16 |
+
f.write(response.content)
|
17 |
+
|
18 |
# Function to extract zip file
|
19 |
def extract_zip(zip_file, extract_to):
|
20 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
|
|
93 |
# Streamlit UI for Fine-tuning
|
94 |
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
|
95 |
|
96 |
+
zip_file_url = "import os
|
97 |
+
import zipfile
|
98 |
+
import requests
|
99 |
+
import numpy as np
|
100 |
+
import torch
|
101 |
+
from transformers import ViTForImageClassification, AdamW
|
102 |
+
import nibabel as nib
|
103 |
+
from PIL import Image
|
104 |
+
from torch.utils.data import Dataset, DataLoader
|
105 |
+
import streamlit as st
|
106 |
+
|
107 |
+
# Function to download the zip file from the URL
|
108 |
+
def download_zip(url, save_path):
|
109 |
+
response = requests.get(url)
|
110 |
+
with open(save_path, 'wb') as f:
|
111 |
+
f.write(response.content)
|
112 |
+
|
113 |
+
# Function to extract zip file
|
114 |
+
def extract_zip(zip_file, extract_to):
|
115 |
+
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
116 |
+
zip_ref.extractall(extract_to)
|
117 |
+
|
118 |
+
# Preprocess images
|
119 |
+
def preprocess_image(image_path):
|
120 |
+
ext = os.path.splitext(image_path)[-1].lower()
|
121 |
+
|
122 |
+
if ext in ['.nii', '.nii.gz']:
|
123 |
+
nii_image = nib.load(image_path)
|
124 |
+
image_data = nii_image.get_fdata()
|
125 |
+
image_tensor = torch.tensor(image_data).float()
|
126 |
+
if len(image_tensor.shape) == 3:
|
127 |
+
image_tensor = image_tensor.unsqueeze(0)
|
128 |
+
|
129 |
+
elif ext in ['.jpg', '.jpeg']:
|
130 |
+
img = Image.open(image_path).convert('RGB').resize((224, 224))
|
131 |
+
img_np = np.array(img)
|
132 |
+
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
|
133 |
+
|
134 |
+
else:
|
135 |
+
raise ValueError(f"Unsupported format: {ext}")
|
136 |
+
|
137 |
+
image_tensor /= 255.0 # Normalize to [0, 1]
|
138 |
+
return image_tensor
|
139 |
+
|
140 |
+
# Prepare dataset
|
141 |
+
def prepare_dataset(extracted_folder):
|
142 |
+
image_paths = []
|
143 |
+
labels = []
|
144 |
+
for disease_folder in ['alzheimers_dataset', 'parkinsons_dataset', 'ms']:
|
145 |
+
folder_path = os.path.join(extracted_folder, disease_folder)
|
146 |
+
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'ms': 2}[disease_folder]
|
147 |
+
for img_file in os.listdir(folder_path):
|
148 |
+
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
|
149 |
+
image_paths.append(os.path.join(folder_path, img_file))
|
150 |
+
labels.append(label)
|
151 |
+
return image_paths, labels
|
152 |
+
|
153 |
+
# Custom Dataset class
|
154 |
+
class CustomImageDataset(Dataset):
|
155 |
+
def __init__(self, image_paths, labels):
|
156 |
+
self.image_paths = image_paths
|
157 |
+
self.labels = labels
|
158 |
+
|
159 |
+
def __len__(self):
|
160 |
+
return len(self.image_paths)
|
161 |
+
|
162 |
+
def __getitem__(self, idx):
|
163 |
+
image = preprocess_image(self.image_paths[idx])
|
164 |
+
label = self.labels[idx]
|
165 |
+
return image, label
|
166 |
+
|
167 |
+
# Training function
|
168 |
+
def fine_tune_model(train_loader):
|
169 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3)
|
170 |
+
model.train()
|
171 |
+
optimizer = AdamW(model.parameters(), lr=1e-4)
|
172 |
+
criterion = torch.nn.CrossEntropyLoss()
|
173 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
174 |
+
model.to(device)
|
175 |
+
|
176 |
+
for epoch in range(10):
|
177 |
+
running_loss = 0.0
|
178 |
+
for images, labels in train_loader:
|
179 |
+
images, labels = images.to(device), labels.to(device)
|
180 |
+
optimizer.zero_grad()
|
181 |
+
outputs = model(pixel_values=images).logits
|
182 |
+
loss = criterion(outputs, labels)
|
183 |
+
loss.backward()
|
184 |
+
optimizer.step()
|
185 |
+
running_loss += loss.item()
|
186 |
+
return running_loss / len(train_loader)
|
187 |
+
|
188 |
+
# Streamlit UI for Fine-tuning
|
189 |
+
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
|
190 |
+
|
191 |
+
zip_file_url = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/archive%20(5).zip"
|
192 |
|
193 |
if st.button("Start Training"):
|
194 |
extraction_dir = "extracted_files"
|
195 |
+
zip_file_path = "archive_5.zip"
|
196 |
os.makedirs(extraction_dir, exist_ok=True)
|
197 |
|
198 |
+
# Download the zip file
|
199 |
+
st.write("Downloading the zip file...")
|
200 |
+
download_zip(zip_file_url, zip_file_path)
|
201 |
+
|
202 |
# Extract the zip file
|
203 |
+
st.write("Extracting files...")
|
204 |
+
extract_zip(zip_file_path, extraction_dir)
|
205 |
|
206 |
# Prepare dataset
|
207 |
image_paths, labels = prepare_dataset(extraction_dir)
|
|
|
209 |
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
210 |
|
211 |
# Fine-tune the model
|
212 |
+
st.write("Fine-tuning the model...")
|
213 |
final_loss = fine_tune_model(train_loader)
|
214 |
st.write(f"Training Complete with Final Loss: {final_loss}")
|
215 |
+
"
|
216 |
+
|
217 |
+
if st.button("Start Training"):
|
218 |
+
extraction_dir = "extracted_files"
|
219 |
+
zip_file_path = "archive_5.zip"
|
220 |
+
os.makedirs(extraction_dir, exist_ok=True)
|
221 |
|
222 |
+
# Download the zip file
|
223 |
+
st.write("Downloading the zip file...")
|
224 |
+
download_zip(zip_file_url, zip_file_path)
|
225 |
+
|
226 |
+
# Extract the zip file
|
227 |
+
st.write("Extracting files...")
|
228 |
+
extract_zip(zip_file_path, extraction_dir)
|
229 |
+
|
230 |
+
# Prepare dataset
|
231 |
+
image_paths, labels = prepare_dataset(extraction_dir)
|
232 |
+
dataset = CustomImageDataset(image_paths, labels)
|
233 |
+
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
234 |
+
|
235 |
+
# Fine-tune the model
|
236 |
+
st.write("Fine-tuning the model...")
|
237 |
+
final_loss = fine_tune_model(train_loader)
|
238 |
+
st.write(f"Training Complete with Final Loss: {final_loss}")
|
239 |
|
240 |
|