Spaces:
Sleeping
Sleeping
Tanusree88
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import zipfile
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from transformers import ViTForImageClassification, AdamW
|
6 |
-
import nibabel as nib
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
@@ -17,13 +16,14 @@ def extract_zip(zip_file, extract_to):
|
|
17 |
def preprocess_image(image_path):
|
18 |
ext = os.path.splitext(image_path)[-1].lower()
|
19 |
|
20 |
-
if ext in ['.
|
21 |
-
|
22 |
-
image_data = nii_image.get_fdata()
|
23 |
image_tensor = torch.tensor(image_data).float()
|
24 |
-
if len(image_tensor.shape) ==
|
25 |
-
image_tensor = image_tensor.unsqueeze(0)
|
26 |
-
|
|
|
|
|
27 |
elif ext in ['.jpg', '.jpeg']:
|
28 |
img = Image.open(image_path).convert('RGB').resize((224, 224))
|
29 |
img_np = np.array(img)
|
@@ -52,16 +52,18 @@ def prepare_dataset(extracted_folder):
|
|
52 |
# Check if the subfolder exists
|
53 |
if not os.path.exists(folder_path):
|
54 |
print(f"Folder not found: {folder_path}")
|
55 |
-
continue # Skip this folder if it's not
|
|
|
56 |
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder]
|
57 |
|
58 |
for img_file in os.listdir(folder_path):
|
59 |
-
if img_file.endswith(('.
|
60 |
image_paths.append(os.path.join(folder_path, img_file))
|
61 |
labels.append(label)
|
62 |
else:
|
63 |
-
print(f"
|
64 |
-
|
|
|
65 |
return image_paths, labels
|
66 |
|
67 |
# Custom Dataset class
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from transformers import ViTForImageClassification, AdamW
|
|
|
6 |
from PIL import Image
|
7 |
from torch.utils.data import Dataset, DataLoader
|
8 |
import streamlit as st
|
|
|
16 |
def preprocess_image(image_path):
|
17 |
ext = os.path.splitext(image_path)[-1].lower()
|
18 |
|
19 |
+
if ext in ['.npy']:
|
20 |
+
image_data = np.load(image_path)
|
|
|
21 |
image_tensor = torch.tensor(image_data).float()
|
22 |
+
if len(image_tensor.shape) == 2: # If the image is 2D (grayscale)
|
23 |
+
image_tensor = image_tensor.unsqueeze(0) # Add channel dimension
|
24 |
+
elif len(image_tensor.shape) == 3: # If the image is 3D (height, width, channels)
|
25 |
+
image_tensor = image_tensor.permute(2, 0, 1).float() # Change to (C, H, W)
|
26 |
+
|
27 |
elif ext in ['.jpg', '.jpeg']:
|
28 |
img = Image.open(image_path).convert('RGB').resize((224, 224))
|
29 |
img_np = np.array(img)
|
|
|
52 |
# Check if the subfolder exists
|
53 |
if not os.path.exists(folder_path):
|
54 |
print(f"Folder not found: {folder_path}")
|
55 |
+
continue # Skip this folder if it's not found
|
56 |
+
|
57 |
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder]
|
58 |
|
59 |
for img_file in os.listdir(folder_path):
|
60 |
+
if img_file.endswith(('.npy', '.jpg', '.jpeg')):
|
61 |
image_paths.append(os.path.join(folder_path, img_file))
|
62 |
labels.append(label)
|
63 |
else:
|
64 |
+
print(f"Unsupported file: {img_file}")
|
65 |
+
|
66 |
+
print(f"Total images loaded: {len(image_paths)}")
|
67 |
return image_paths, labels
|
68 |
|
69 |
# Custom Dataset class
|