Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from huggingface_hub import snapshot_download | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers import Phi3Config, Phi3Model | |
from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Phi3Transformer(Phi3Model): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`] | |
We only modified the attention mask | |
Args: | |
config: Phi3Config | |
""" | |
def prefetch_layer(self, layer_idx: int, device: torch.device): | |
"Starts prefetching the next layer cache" | |
with torch.cuda.stream(self.prefetch_stream): | |
# Prefetch next layer tensors to GPU | |
for name, param in self.layers[layer_idx].named_parameters(): | |
param.data = param.data.to(device, non_blocking=True) | |
def evict_previous_layer(self, layer_idx: int): | |
"Moves the previous layer cache to the CPU" | |
prev_layer_idx = layer_idx - 1 | |
for name, param in self.layers[prev_layer_idx].named_parameters(): | |
param.data = param.data.to("cpu", non_blocking=True) | |
def get_offlaod_layer(self, layer_idx: int, device: torch.device): | |
# init stream | |
if not hasattr(self, "prefetch_stream"): | |
self.prefetch_stream = torch.cuda.Stream() | |
# delete previous layer | |
torch.cuda.current_stream().synchronize() | |
self.evict_previous_layer(layer_idx) | |
# make sure the current layer is ready | |
torch.cuda.synchronize(self.prefetch_stream) | |
# load next layer | |
self.prefetch_layer((layer_idx + 1) % len(self.layers), device) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
offload_model: Optional[bool] = False, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# kept for BC (non `Cache` `past_key_values` inputs) | |
return_legacy_cache = False | |
if use_cache and not isinstance(past_key_values, Cache): | |
return_legacy_cache = True | |
if past_key_values is None: | |
past_key_values = DynamicCache() | |
else: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
logger.warning_once( | |
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " | |
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " | |
"(https://huggingface.co./docs/transformers/kv_cache#legacy-cache-format)" | |
) | |
# if inputs_embeds is None: | |
# inputs_embeds = self.embed_tokens(input_ids) | |
# if cache_position is None: | |
# past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
# cache_position = torch.arange( | |
# past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
# ) | |
# if position_ids is None: | |
# position_ids = cache_position.unsqueeze(0) | |
if attention_mask is not None and attention_mask.dim() == 3: | |
dtype = inputs_embeds.dtype | |
min_dtype = torch.finfo(dtype).min | |
attention_mask = (1 - attention_mask) * min_dtype | |
attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype) | |
else: | |
raise | |
# causal_mask = self._update_causal_mask( | |
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
# ) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
layer_idx = -1 | |
for decoder_layer in self.layers: | |
layer_idx += 1 | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
if offload_model and not self.training: | |
self.get_offlaod_layer(layer_idx, device=inputs_embeds.device) | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
print('************') | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if return_legacy_cache: | |
next_cache = next_cache.to_legacy_cache() | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |