Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
8 |
+
|
9 |
+
# β
Force CPU execution
|
10 |
+
device = torch.device("cpu")
|
11 |
+
|
12 |
+
# πΉ Load IBM Granite Model (CPU-Compatible)
|
13 |
+
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
14 |
+
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
MODEL_NAME,
|
17 |
+
device_map="cpu", # Force CPU execution
|
18 |
+
torch_dtype=torch.float32 # Use float32 since Hugging Face runs on CPU
|
19 |
+
)
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
22 |
+
|
23 |
+
# πΉ Apply LoRA Fine-Tuning Configuration
|
24 |
+
lora_config = LoraConfig(
|
25 |
+
r=8,
|
26 |
+
lora_alpha=32,
|
27 |
+
target_modules=["q_proj", "v_proj"],
|
28 |
+
lora_dropout=0.1,
|
29 |
+
bias="none",
|
30 |
+
task_type=TaskType.CAUSAL_LM
|
31 |
+
)
|
32 |
+
model = get_peft_model(model, lora_config)
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
# π Function to Read & Extract Text from PDFs
|
36 |
+
def read_files(file):
|
37 |
+
file_context = ""
|
38 |
+
reader = PdfReader(file)
|
39 |
+
|
40 |
+
for page in reader.pages:
|
41 |
+
text = page.extract_text()
|
42 |
+
if text:
|
43 |
+
file_context += text + "\n"
|
44 |
+
|
45 |
+
return file_context.strip()
|
46 |
+
|
47 |
+
# π Function to Format AI Prompts
|
48 |
+
def format_prompt(system_msg, user_msg, file_context=""):
|
49 |
+
if file_context:
|
50 |
+
system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
51 |
+
return [
|
52 |
+
{"role": "system", "content": system_msg},
|
53 |
+
{"role": "user", "content": user_msg}
|
54 |
+
]
|
55 |
+
|
56 |
+
# π Function to Generate AI Responses
|
57 |
+
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
58 |
+
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
output = model.generate(
|
62 |
+
**model_inputs,
|
63 |
+
max_new_tokens=max_tokens,
|
64 |
+
do_sample=True,
|
65 |
+
top_p=top_p,
|
66 |
+
temperature=temperature,
|
67 |
+
num_return_sequences=1,
|
68 |
+
pad_token_id=tokenizer.eos_token_id
|
69 |
+
)
|
70 |
+
|
71 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
# π Function to Clean AI Output
|
74 |
+
def post_process(text):
|
75 |
+
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
76 |
+
lines = cleaned.splitlines()
|
77 |
+
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
78 |
+
return "\n".join(unique_lines)
|
79 |
+
|
80 |
+
# π Function to Handle RAG with IBM Granite & Streamlit
|
81 |
+
def granite_simple(prompt, file):
|
82 |
+
file_context = read_files(file) if file else ""
|
83 |
+
|
84 |
+
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
85 |
+
|
86 |
+
messages = format_prompt(system_message, prompt, file_context)
|
87 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
+
|
89 |
+
response = generate_response(input_text)
|
90 |
+
return post_process(response)
|
91 |
+
|
92 |
+
# πΉ Streamlit UI
|
93 |
+
def main():
|
94 |
+
st.set_page_config(page_title="Contract Analysis AI", page_icon="π")
|
95 |
+
|
96 |
+
st.title("π AI-Powered Contract Analysis Tool")
|
97 |
+
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
98 |
+
|
99 |
+
# πΉ Sidebar Settings
|
100 |
+
with st.sidebar:
|
101 |
+
st.header("βοΈ Settings")
|
102 |
+
max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
|
103 |
+
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
104 |
+
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
105 |
+
|
106 |
+
# πΉ File Upload Section
|
107 |
+
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
108 |
+
|
109 |
+
# β
Ensure file upload message is displayed
|
110 |
+
if uploaded_file is not None:
|
111 |
+
st.session_state["uploaded_file"] = uploaded_file # Persist file in session state
|
112 |
+
st.success("β
File uploaded successfully!")
|
113 |
+
st.write("Click the button below to analyze the contract.")
|
114 |
+
|
115 |
+
# Force button to always render
|
116 |
+
st.markdown('<style>div.stButton > button {display: block; width: 100%;}</style>', unsafe_allow_html=True)
|
117 |
+
|
118 |
+
if st.button("π Analyze Document"):
|
119 |
+
with st.spinner("Analyzing contract document... β³"):
|
120 |
+
final_answer = granite_simple(
|
121 |
+
"Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges.",
|
122 |
+
uploaded_file
|
123 |
+
)
|
124 |
+
|
125 |
+
# πΉ Display Analysis Result
|
126 |
+
st.subheader("π Analysis Result")
|
127 |
+
st.write(final_answer)
|
128 |
+
|
129 |
+
# π₯ Run Streamlit App
|
130 |
+
if __name__ == '__main__':
|
131 |
+
main()
|