Upload 2 files
Browse files
const.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SAMPLER_LIST = ["Euler", "Euler a", "LMS", "Heun", "DPM2", "DPM2 a", "DPM++ 2S a", "DPM++ 2M", "DPM++ SDE", "DPM fast",
|
2 |
+
"DPM adaptive", "LMS Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ 2S a Karras", "DPM++ 2M Karras",
|
3 |
+
"DPM++ SDE Karras", "DDIM", "PLMS"]
|
4 |
+
|
5 |
+
SDXL_MODEL_LIST = ["sd_xl_base_1.0.safetensors [be9edd61]", "dreamshaperXL10_alpha2.safetensors [c8afe2ef]",
|
6 |
+
"dynavisionXL_0411.safetensors [c39cc051]"]
|
7 |
+
|
8 |
+
CMODULES = ['none', 'canny', 'depth', 'depth_leres', 'depth_leres++', 'hed', 'hed_safe', 'mediapipe_face', 'mlsd',
|
9 |
+
'normal_map', 'openpose', 'openpose_hand', 'openpose_face', 'openpose_faceonly', 'openpose_full',
|
10 |
+
'clip_vision', 'color', 'pidinet', 'pidinet_safe', 'pidinet_sketch', 'pidinet_scribble', 'scribble_xdog',
|
11 |
+
'scribble_hed', 'segmentation', 'threshold', 'depth_zoe', 'normal_bae', 'oneformer_coco', 'oneformer_ade20k',
|
12 |
+
'lineart', 'lineart_coarse', 'lineart_anime', 'lineart_standard', 'shuffle', 'tile_resample', 'invert',
|
13 |
+
'lineart_anime_denoise', 'reference_only', 'reference_adain', 'reference_adain+attn', 'inpaint',
|
14 |
+
'inpaint_only', 'inpaint_only+lama', 'tile_colorfix', 'tile_colorfix+sharp']
|
15 |
+
|
16 |
+
CMODELS = ['control_v11p_sd15_canny [d14c016b]', 'control_v11p_sd15_openpose [cab727d4]',
|
17 |
+
'control_v11p_sd15_softedge [a8575a2a]', 'control_v11p_sd15_scribble [d4ba51ff]']
|
engine.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import requests
|
4 |
+
import random
|
5 |
+
import json
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
from PIL import Image
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
|
14 |
+
class Prodia:
|
15 |
+
def __init__(self, api_key, base=None):
|
16 |
+
self.base = base or "https://api.prodia.com/v1"
|
17 |
+
self.headers = {
|
18 |
+
"X-Prodia-Key": api_key
|
19 |
+
}
|
20 |
+
|
21 |
+
def sd_controlnet(self, params):
|
22 |
+
response = self._post(f"{self.base}/sd/controlnet", params)
|
23 |
+
return response.json()
|
24 |
+
|
25 |
+
def sd_transform(self, params):
|
26 |
+
response = self._post(f"{self.base}/sd/transform", params)
|
27 |
+
return response.json()
|
28 |
+
|
29 |
+
def sd_generate(self, params):
|
30 |
+
response = self._post(f"{self.base}/sd/generate", params)
|
31 |
+
return response.json()
|
32 |
+
|
33 |
+
def sdxl_generate(self, params):
|
34 |
+
response = self._post(f"{self.base}/sdxl/generate", params)
|
35 |
+
return response.json()
|
36 |
+
|
37 |
+
def get_job(self, job_id):
|
38 |
+
response = self._get(f"{self.base}/job/{job_id}")
|
39 |
+
return response.json()
|
40 |
+
|
41 |
+
def wait(self, job):
|
42 |
+
job_result = job
|
43 |
+
|
44 |
+
while job_result['status'] not in ['succeeded', 'failed']:
|
45 |
+
time.sleep(0.25)
|
46 |
+
job_result = self.get_job(job['job'])
|
47 |
+
|
48 |
+
if job_result['status'] == 'failed':
|
49 |
+
raise Exception("Job failed")
|
50 |
+
|
51 |
+
return job_result
|
52 |
+
|
53 |
+
def upload(self, file):
|
54 |
+
files = {'file': open(file, 'rb')}
|
55 |
+
img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id']
|
56 |
+
|
57 |
+
payload = {
|
58 |
+
"content": "",
|
59 |
+
"nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH",
|
60 |
+
"replies": [],
|
61 |
+
"attachments":
|
62 |
+
[img_id]
|
63 |
+
}
|
64 |
+
resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")})
|
65 |
+
return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}"
|
66 |
+
|
67 |
+
def list_models(self):
|
68 |
+
response = self._get(f"{self.base}/models/list")
|
69 |
+
return response.json()
|
70 |
+
|
71 |
+
def _post(self, url, params):
|
72 |
+
headers = {
|
73 |
+
**self.headers,
|
74 |
+
"Content-Type": "application/json"
|
75 |
+
}
|
76 |
+
response = requests.post(url, headers=headers, data=json.dumps(params))
|
77 |
+
|
78 |
+
if response.status_code != 200:
|
79 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
80 |
+
|
81 |
+
return response
|
82 |
+
|
83 |
+
def _get(self, url):
|
84 |
+
response = requests.get(url, headers=self.headers)
|
85 |
+
|
86 |
+
if response.status_code != 200:
|
87 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
88 |
+
|
89 |
+
return response
|
90 |
+
|
91 |
+
|
92 |
+
def image_to_base64(image_path):
|
93 |
+
# Open the image with PIL
|
94 |
+
with Image.open(image_path) as image:
|
95 |
+
# Convert the image to bytes
|
96 |
+
buffered = BytesIO()
|
97 |
+
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
98 |
+
|
99 |
+
# Encode the bytes to base64
|
100 |
+
img_str = base64.b64encode(buffered.getvalue())
|
101 |
+
|
102 |
+
return img_str.decode('utf-8') # Convert bytes to string
|
103 |
+
|
104 |
+
|
105 |
+
prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY"))
|
106 |
+
|
107 |
+
|
108 |
+
def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed):
|
109 |
+
result = prodia_client.sdxl_generate({
|
110 |
+
"prompt": prompt,
|
111 |
+
"negative_prompt": negative_prompt,
|
112 |
+
"model": model,
|
113 |
+
"steps": steps,
|
114 |
+
"sampler": sampler,
|
115 |
+
"cfg_scale": cfg_scale,
|
116 |
+
"seed": seed
|
117 |
+
})
|
118 |
+
|
119 |
+
job = prodia_client.wait(result)
|
120 |
+
|
121 |
+
return job["imageUrl"]
|
122 |
+
|
123 |
+
|
124 |
+
def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale):
|
125 |
+
result = prodia_client.sd_generate({
|
126 |
+
"prompt": prompt,
|
127 |
+
"negative_prompt": negative_prompt,
|
128 |
+
"model": model,
|
129 |
+
"steps": steps,
|
130 |
+
"sampler": sampler,
|
131 |
+
"cfg_scale": cfg_scale,
|
132 |
+
"seed": seed,
|
133 |
+
"upscale": upscale,
|
134 |
+
"width": width,
|
135 |
+
"height": height
|
136 |
+
})
|
137 |
+
|
138 |
+
job = prodia_client.wait(result)
|
139 |
+
|
140 |
+
return job["imageUrl"]
|
141 |
+
|
142 |
+
|
143 |
+
def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler):
|
144 |
+
image_url = prodia_client.upload(image)
|
145 |
+
result = prodia_client.sd_transform({
|
146 |
+
"imageUrl": image_url,
|
147 |
+
'model': model,
|
148 |
+
'prompt': prompt,
|
149 |
+
'denoising_strength': denoising_strength,
|
150 |
+
'negative_prompt': negative_prompt,
|
151 |
+
'steps': steps,
|
152 |
+
'cfg_scale': cfg_scale,
|
153 |
+
'seed': seed,
|
154 |
+
'upscale': upscale,
|
155 |
+
'sampler': sampler
|
156 |
+
})
|
157 |
+
|
158 |
+
job = prodia_client.wait(result)
|
159 |
+
|
160 |
+
return job["imageUrl"]
|
161 |
+
|
162 |
+
|
163 |
+
def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height):
|
164 |
+
print(image)
|
165 |
+
image_url = prodia_client.upload(image)
|
166 |
+
result = prodia_client.sd_transform({
|
167 |
+
"imageUrl": image_url,
|
168 |
+
"controlnet_model": controlnet_model,
|
169 |
+
"controlnet_module": controlnet_module,
|
170 |
+
"threshold_a": threshold_a,
|
171 |
+
"threshold_b": threshold_b,
|
172 |
+
"resize_mode": int(resize_mode),
|
173 |
+
"prompt": prompt,
|
174 |
+
'negative_prompt': negative_prompt,
|
175 |
+
'steps': steps,
|
176 |
+
'cfg_scale': cfg_scale,
|
177 |
+
'seed': seed,
|
178 |
+
'sampler': sampler,
|
179 |
+
"height": height,
|
180 |
+
"width": width
|
181 |
+
})
|
182 |
+
|
183 |
+
job = prodia_client.wait(result)
|
184 |
+
|
185 |
+
return job["imageUrl"]
|
186 |
+
|
187 |
+
def get_models():
|
188 |
+
return prodia_client.list_models()
|