Spaces:
Runtime error
Runtime error
import os | |
import time | |
import requests | |
import random | |
import json | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
class Prodia: | |
def __init__(self, api_key, base=None): | |
self.base = base or "https://api.prodia.com/v1" | |
self.headers = { | |
"X-Prodia-Key": api_key | |
} | |
def sd_controlnet(self, params): | |
response = self._post(f"{self.base}/sd/controlnet", params) | |
return response.json() | |
def sd_transform(self, params): | |
response = self._post(f"{self.base}/sd/transform", params) | |
return response.json() | |
def sd_generate(self, params): | |
response = self._post(f"{self.base}/sd/generate", params) | |
return response.json() | |
def sdxl_generate(self, params): | |
response = self._post(f"{self.base}/sdxl/generate", params) | |
return response.json() | |
def upscale_image(self, params): | |
response = self._post(f"{self.base}/upscale", params) | |
return response.json() | |
def get_job(self, job_id): | |
response = self._get(f"{self.base}/job/{job_id}") | |
return response.json() | |
def wait(self, job): | |
job_result = job | |
while job_result['status'] not in ['succeeded', 'failed']: | |
time.sleep(0.25) | |
job_result = self.get_job(job['job']) | |
if job_result['status'] == 'failed': | |
raise Exception("Job failed") | |
return job_result | |
def upload(self, file): | |
files = {'file': open(file, 'rb')} | |
img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id'] | |
payload = { | |
"content": "", | |
"nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", | |
"replies": [], | |
"attachments": | |
[img_id] | |
} | |
resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")}) | |
return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}" | |
def list_models(self): | |
response = self._get(f"{self.base}/models/list") | |
return response.json() | |
def _post(self, url, params): | |
headers = { | |
**self.headers, | |
"Content-Type": "application/json" | |
} | |
response = requests.post(url, headers=headers, data=json.dumps(params)) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def _get(self, url): | |
response = requests.get(url, headers=self.headers) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def image_to_base64(image_path): | |
# Open the image with PIL | |
with Image.open(image_path) as image: | |
# Convert the image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change format to PNG if needed | |
# Encode the bytes to base64 | |
img_str = base64.b64encode(buffered.getvalue()) | |
return img_str.decode('utf-8') # Convert bytes to string | |
prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY")) | |
def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed): | |
result = prodia_client.sdxl_generate({ | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": model, | |
"steps": steps, | |
"sampler": sampler, | |
"cfg_scale": cfg_scale, | |
"seed": seed | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale): | |
result = prodia_client.sd_generate({ | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": model, | |
"steps": steps, | |
"sampler": sampler, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"upscale": upscale, | |
"width": width, | |
"height": height | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler): | |
image_url = prodia_client.upload(image) | |
result = prodia_client.sd_transform({ | |
"imageUrl": image_url, | |
'model': model, | |
'prompt': prompt, | |
'denoising_strength': denoising_strength, | |
'negative_prompt': negative_prompt, | |
'steps': steps, | |
'cfg_scale': cfg_scale, | |
'seed': seed, | |
'upscale': upscale, | |
'sampler': sampler | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height): | |
image_url = prodia_client.upload(image) | |
result = prodia_client.sd_transform({ | |
"imageUrl": image_url, | |
"controlnet_model": controlnet_model, | |
"controlnet_module": controlnet_module, | |
"threshold_a": threshold_a, | |
"threshold_b": threshold_b, | |
"resize_mode": int(resize_mode), | |
"prompt": prompt, | |
'negative_prompt': negative_prompt, | |
'steps': steps, | |
'cfg_scale': cfg_scale, | |
'seed': seed, | |
'sampler': sampler, | |
"height": height, | |
"width": width | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def image_upscale(image, scale_by): | |
image_url = prodia_client.upload(image) | |
result = prodia_client.upscale_image({ | |
'imageUrl': image_url, | |
'resize': scale_by | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def get_models(): | |
return prodia_client.list_models() | |