Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# Load TinyBERT
|
5 |
+
model_name = "huawei-noah/TinyBERT_General_6L_768D"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Streamlit App Title
|
10 |
+
st.title("TinyBERT Text Summarization")
|
11 |
+
|
12 |
+
# Input text box
|
13 |
+
input_text = st.text_area("Enter text for summarization:", height=200)
|
14 |
+
|
15 |
+
# Button to perform summarization
|
16 |
+
if st.button("Summarize"):
|
17 |
+
if input_text:
|
18 |
+
# Tokenize input text
|
19 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
20 |
+
|
21 |
+
# Get model outputs
|
22 |
+
outputs = model(**inputs)
|
23 |
+
|
24 |
+
# Display output (this is placeholder logic, adjust to your specific task)
|
25 |
+
st.write(f"Model output: {outputs}")
|
26 |
+
else:
|
27 |
+
st.warning("Please enter some text to summarize.")
|