Spaces:
Restarting
on
Zero
Restarting
on
Zero
tianleliphoebe
commited on
Commit
·
26dad4e
1
Parent(s):
3efdac8
update video generation
Browse files- model/model_manager.py +6 -6
- model/model_registry.py +25 -3
- model/models/__init__.py +7 -2
- model/models/fal_api_models.py +7 -1
- model/models/videogenhub_models.py +12 -0
- requirements.txt +10 -2
- serve/vote_utils.py +58 -21
model/model_manager.py
CHANGED
@@ -37,7 +37,7 @@ class ModelManager:
|
|
37 |
results = []
|
38 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
39 |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names}
|
40 |
-
for future in
|
41 |
result = future.result()
|
42 |
results.append(result)
|
43 |
return results[0], results[1], model_names[0], model_names[1]
|
@@ -47,7 +47,7 @@ class ModelManager:
|
|
47 |
model_names = [model_A, model_B]
|
48 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
49 |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names}
|
50 |
-
for future in
|
51 |
result = future.result()
|
52 |
results.append(result)
|
53 |
return results[0], results[1]
|
@@ -63,7 +63,7 @@ class ModelManager:
|
|
63 |
model_names = [model_A, model_B]
|
64 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
65 |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names}
|
66 |
-
for future in
|
67 |
result = future.result()
|
68 |
results.append(result)
|
69 |
return results[0], results[1]
|
@@ -77,7 +77,7 @@ class ModelManager:
|
|
77 |
# model_names = [model_A, model_B]
|
78 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
79 |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names}
|
80 |
-
for future in
|
81 |
result = future.result()
|
82 |
results.append(result)
|
83 |
return results[0], results[1], model_names[0], model_names[1]
|
@@ -97,7 +97,7 @@ class ModelManager:
|
|
97 |
results = []
|
98 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
99 |
future_to_result = {executor.submit(self.generate_video_vg, prompt, model): model for model in model_names}
|
100 |
-
for future in
|
101 |
result = future.result()
|
102 |
results.append(result)
|
103 |
return results[0], results[1], model_names[0], model_names[1]
|
@@ -107,7 +107,7 @@ class ModelManager:
|
|
107 |
model_names = [model_A, model_B]
|
108 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
109 |
future_to_result = {executor.submit(self.generate_video_vg, prompt, model): model for model in model_names}
|
110 |
-
for future in
|
111 |
result = future.result()
|
112 |
results.append(result)
|
113 |
return results[0], results[1]
|
|
|
37 |
results = []
|
38 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
39 |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names}
|
40 |
+
for future in future_to_result:
|
41 |
result = future.result()
|
42 |
results.append(result)
|
43 |
return results[0], results[1], model_names[0], model_names[1]
|
|
|
47 |
model_names = [model_A, model_B]
|
48 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
49 |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names}
|
50 |
+
for future in future_to_result:
|
51 |
result = future.result()
|
52 |
results.append(result)
|
53 |
return results[0], results[1]
|
|
|
63 |
model_names = [model_A, model_B]
|
64 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
65 |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names}
|
66 |
+
for future in future_to_result:
|
67 |
result = future.result()
|
68 |
results.append(result)
|
69 |
return results[0], results[1]
|
|
|
77 |
# model_names = [model_A, model_B]
|
78 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
79 |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names}
|
80 |
+
for future in future_to_result:
|
81 |
result = future.result()
|
82 |
results.append(result)
|
83 |
return results[0], results[1], model_names[0], model_names[1]
|
|
|
97 |
results = []
|
98 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
99 |
future_to_result = {executor.submit(self.generate_video_vg, prompt, model): model for model in model_names}
|
100 |
+
for future in future_to_result:
|
101 |
result = future.result()
|
102 |
results.append(result)
|
103 |
return results[0], results[1], model_names[0], model_names[1]
|
|
|
107 |
model_names = [model_A, model_B]
|
108 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
109 |
future_to_result = {executor.submit(self.generate_video_vg, prompt, model): model for model in model_names}
|
110 |
+
for future in future_to_result:
|
111 |
result = future.result()
|
112 |
results.append(result)
|
113 |
return results[0], results[1]
|
model/model_registry.py
CHANGED
@@ -166,18 +166,39 @@ register_model_info(
|
|
166 |
)
|
167 |
|
168 |
register_model_info(
|
169 |
-
["
|
170 |
"AnimateDiff",
|
171 |
"https://fal.ai/models/fast-animatediff-t2v",
|
172 |
"AnimateDiff is a text-driven models that produce diverse and personalized animated images.",
|
173 |
)
|
174 |
|
175 |
register_model_info(
|
176 |
-
["
|
177 |
"AnimateDiff Turbo",
|
178 |
"https://fal.ai/models/fast-animatediff-t2v-turbo",
|
179 |
"AnimateDiff Turbo is a lightning version of AnimateDiff.",
|
180 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
|
183 |
models = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation',
|
@@ -185,4 +206,5 @@ models = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub
|
|
185 |
'imagenhub_StableCascade_generation','imagenhub_PlaygroundV2_generation', 'fal_Playground-v25_generation', 'fal_stable-cascade_text2image',
|
186 |
'imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition',
|
187 |
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition'
|
188 |
-
"
|
|
|
|
166 |
)
|
167 |
|
168 |
register_model_info(
|
169 |
+
["fal_AnimateDiff_text2video"],
|
170 |
"AnimateDiff",
|
171 |
"https://fal.ai/models/fast-animatediff-t2v",
|
172 |
"AnimateDiff is a text-driven models that produce diverse and personalized animated images.",
|
173 |
)
|
174 |
|
175 |
register_model_info(
|
176 |
+
["fal_AnimateDiffTurbo_text2video"],
|
177 |
"AnimateDiff Turbo",
|
178 |
"https://fal.ai/models/fast-animatediff-t2v-turbo",
|
179 |
"AnimateDiff Turbo is a lightning version of AnimateDiff.",
|
180 |
)
|
181 |
+
|
182 |
+
register_model_info(
|
183 |
+
["videogenhub_LaVie_generation"],
|
184 |
+
"LaVie",
|
185 |
+
"https://github.com/Vchitect/LaVie",
|
186 |
+
"LaVie is a video generation model with cascaded latent diffusion models.",
|
187 |
+
)
|
188 |
+
|
189 |
+
register_model_info(
|
190 |
+
["videogenhub_VideoCrafter2_generation"],
|
191 |
+
"VideoCrafter2",
|
192 |
+
"https://ailab-cvc.github.io/videocrafter2/",
|
193 |
+
"VideoCrafter2 is a T2V model that disentangling motion from appearance.",
|
194 |
+
)
|
195 |
+
|
196 |
+
register_model_info(
|
197 |
+
["videogenhub_ModelScope_generation"],
|
198 |
+
"ModelScope",
|
199 |
+
"https://arxiv.org/abs/2308.06571",
|
200 |
+
"ModelScope is a a T2V synthesis model that evolves from a T2I synthesis model.",
|
201 |
+
)
|
202 |
|
203 |
|
204 |
models = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation',
|
|
|
206 |
'imagenhub_StableCascade_generation','imagenhub_PlaygroundV2_generation', 'fal_Playground-v25_generation', 'fal_stable-cascade_text2image',
|
207 |
'imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition',
|
208 |
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition'
|
209 |
+
"fal_AnimateDiffTurbo_text2video", "fal_AnimateDiff_text2video",
|
210 |
+
"videogenhub_LaVie_generation", "videogenhub_VideoCrafter2_generation", "videogenhub_ModelScope_generation"]
|
model/models/__init__.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
from .imagenhub_models import load_imagenhub_model
|
2 |
from .playground_api import load_playground_model
|
3 |
from .fal_api_models import load_fal_model
|
|
|
4 |
|
5 |
IMAGE_GENERATION_MODELS = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation', 'imagenhub_PixArtAlpha_generation',
|
6 |
'imagenhub_OpenJourney_generation','imagenhub_SDXLLightning_generation', 'imagenhub_StableCascade_generation',
|
7 |
'playground_PlayGroundV2_generation', 'playground_PlayGroundV2.5_generation']
|
8 |
IMAGE_EDITION_MODELS = ['imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition',
|
9 |
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition']
|
10 |
-
VIDEO_GENERATION_MODELS = ['
|
11 |
-
'
|
|
|
|
|
12 |
|
13 |
|
14 |
def load_pipeline(model_name):
|
@@ -27,6 +30,8 @@ def load_pipeline(model_name):
|
|
27 |
pipe = load_playground_model(model_name)
|
28 |
elif model_source == "fal":
|
29 |
pipe = load_fal_model(model_name, model_type)
|
|
|
|
|
30 |
else:
|
31 |
raise ValueError(f"Model source {model_source} not supported")
|
32 |
return pipe
|
|
|
1 |
from .imagenhub_models import load_imagenhub_model
|
2 |
from .playground_api import load_playground_model
|
3 |
from .fal_api_models import load_fal_model
|
4 |
+
from .videogenhub_models import load_videogenhub_model
|
5 |
|
6 |
IMAGE_GENERATION_MODELS = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation', 'imagenhub_PixArtAlpha_generation',
|
7 |
'imagenhub_OpenJourney_generation','imagenhub_SDXLLightning_generation', 'imagenhub_StableCascade_generation',
|
8 |
'playground_PlayGroundV2_generation', 'playground_PlayGroundV2.5_generation']
|
9 |
IMAGE_EDITION_MODELS = ['imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition',
|
10 |
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition']
|
11 |
+
VIDEO_GENERATION_MODELS = ['fal_AnimateDiff_text2video',
|
12 |
+
'fal_AnimateDiffTurbo_text2video',
|
13 |
+
'videogenhub_LaVie_generation', 'videogenhub_VideoCrafter2_generation',
|
14 |
+
'videogenhub_ModelScope_generation']
|
15 |
|
16 |
|
17 |
def load_pipeline(model_name):
|
|
|
30 |
pipe = load_playground_model(model_name)
|
31 |
elif model_source == "fal":
|
32 |
pipe = load_fal_model(model_name, model_type)
|
33 |
+
elif model_source == "videogenhub":
|
34 |
+
pipe = load_videogenhub_model(model_name)
|
35 |
else:
|
36 |
raise ValueError(f"Model source {model_source} not supported")
|
37 |
return pipe
|
model/models/fal_api_models.py
CHANGED
@@ -51,8 +51,14 @@ class FalModel():
|
|
51 |
# return result
|
52 |
elif self.model_type == "text2video":
|
53 |
assert "prompt" in kwargs, "prompt is required for text2video model"
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
handler = fal_client.submit(
|
55 |
-
f"fal-ai/{
|
56 |
arguments={
|
57 |
"prompt": kwargs["prompt"]
|
58 |
},
|
|
|
51 |
# return result
|
52 |
elif self.model_type == "text2video":
|
53 |
assert "prompt" in kwargs, "prompt is required for text2video model"
|
54 |
+
if self.model_name == 'AnimateDiff':
|
55 |
+
fal_model_name = 'fast-animatediff/text-to-video'
|
56 |
+
elif self.model_name == 'AnimateDiffTurbo':
|
57 |
+
fal_model_name = 'fast-animatediff/turbo/text-to-video'
|
58 |
+
else:
|
59 |
+
raise NotImplementedError(f"text2video model of {self.model_name} in fal is not implemented yet")
|
60 |
handler = fal_client.submit(
|
61 |
+
f"fal-ai/{fal_model_name}",
|
62 |
arguments={
|
63 |
"prompt": kwargs["prompt"]
|
64 |
},
|
model/models/videogenhub_models.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import videogen_hub
|
2 |
+
|
3 |
+
|
4 |
+
class VideogenHubModel():
|
5 |
+
def __init__(self, model_name):
|
6 |
+
self.model = videogen_hub.load(model_name)
|
7 |
+
|
8 |
+
def __call__(self, *args, **kwargs):
|
9 |
+
return self.model.infer_one_video(*args, **kwargs)
|
10 |
+
|
11 |
+
def load_videogenhub_model(model_name):
|
12 |
+
return VideogenHubModel(model_name)
|
requirements.txt
CHANGED
@@ -5,7 +5,7 @@ faiss-cpu
|
|
5 |
fire
|
6 |
h5py
|
7 |
xformers~=0.0.20
|
8 |
-
numpy>=1.
|
9 |
pandas<2.0.0
|
10 |
peft
|
11 |
torch
|
@@ -49,4 +49,12 @@ statsmodels
|
|
49 |
plotly
|
50 |
-e git+https://github.com/TIGER-AI-Lab/ImagenHub.git#egg=imagen-hub
|
51 |
fal_client
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
fire
|
6 |
h5py
|
7 |
xformers~=0.0.20
|
8 |
+
numpy>=1.23.5
|
9 |
pandas<2.0.0
|
10 |
peft
|
11 |
torch
|
|
|
49 |
plotly
|
50 |
-e git+https://github.com/TIGER-AI-Lab/ImagenHub.git#egg=imagen-hub
|
51 |
fal_client
|
52 |
+
-e git+https://github.com/TIGER-AI-Lab/VideoGenHub.git#egg=videogen-hub
|
53 |
+
open_clip_torch
|
54 |
+
decord
|
55 |
+
huggingface_hub
|
56 |
+
open-clip-torch-any-py3
|
57 |
+
modelscope
|
58 |
+
protobuf==3.20.*
|
59 |
+
rotary_embedding_torch
|
60 |
+
av
|
serve/vote_utils.py
CHANGED
@@ -8,6 +8,7 @@ from pathlib import Path
|
|
8 |
from .utils import *
|
9 |
from .log_utils import build_logger
|
10 |
from .constants import IMAGE_DIR, VIDEO_DIR
|
|
|
11 |
|
12 |
ig_logger = build_logger("gradio_web_server_image_generation", "gr_web_image_generation.log") # ig = image generation, loggers for single model direct chat
|
13 |
igm_logger = build_logger("gradio_web_server_image_generation_multi", "gr_web_image_generation_multi.log") # igm = image generation multi, loggers for side-by-side and battle
|
@@ -105,9 +106,14 @@ def vote_last_response_vg(state, vote_type, model_selector, request: gr.Request)
|
|
105 |
|
106 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
107 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
save_video_file_on_log_server(output_file)
|
112 |
|
113 |
|
@@ -126,9 +132,14 @@ def vote_last_response_vgm(states, vote_type, model_selectors, request: gr.Reque
|
|
126 |
for state in states:
|
127 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
128 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
save_video_file_on_log_server(output_file)
|
133 |
|
134 |
|
@@ -799,7 +810,7 @@ def generate_vg(gen_func, state, text, model_name, request: gr.Request):
|
|
799 |
state.output = generated_video
|
800 |
state.model_name = model_name
|
801 |
|
802 |
-
yield state, generated_video
|
803 |
|
804 |
finish_tstamp = time.time()
|
805 |
|
@@ -819,10 +830,17 @@ def generate_vg(gen_func, state, text, model_name, request: gr.Request):
|
|
819 |
|
820 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
821 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
822 |
-
|
823 |
-
|
824 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
save_video_file_on_log_server(output_file)
|
|
|
826 |
|
827 |
def generate_vgm(gen_func, state0, state1, text, model_name0, model_name1, request: gr.Request):
|
828 |
if not text:
|
@@ -848,11 +866,13 @@ def generate_vgm(gen_func, state0, state1, text, model_name0, model_name1, reque
|
|
848 |
state1.output = generated_video1
|
849 |
state0.model_name = model_name0
|
850 |
state1.model_name = model_name1
|
|
|
|
|
|
|
851 |
|
852 |
-
yield state0, state1, generated_video0, generated_video1
|
853 |
|
854 |
finish_tstamp = time.time()
|
855 |
-
|
856 |
|
857 |
with open(get_conv_log_filename(), "a") as fout:
|
858 |
data = {
|
@@ -883,10 +903,19 @@ def generate_vgm(gen_func, state0, state1, text, model_name0, model_name1, reque
|
|
883 |
for i, state in enumerate([state0, state1]):
|
884 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
885 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
886 |
-
|
887 |
-
|
888 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
889 |
save_video_file_on_log_server(output_file)
|
|
|
890 |
|
891 |
|
892 |
def generate_vgm_annoy(gen_func, state0, state1, text, model_name0, model_name1, request: gr.Request):
|
@@ -909,8 +938,8 @@ def generate_vgm_annoy(gen_func, state0, state1, text, model_name0, model_name1,
|
|
909 |
state0.model_name = model_name0
|
910 |
state1.model_name = model_name1
|
911 |
|
912 |
-
yield state0, state1, generated_video0, generated_video1, \
|
913 |
-
|
914 |
|
915 |
finish_tstamp = time.time()
|
916 |
# logger.info(f"===output===: {output}")
|
@@ -944,7 +973,15 @@ def generate_vgm_annoy(gen_func, state0, state1, text, model_name0, model_name1,
|
|
944 |
for i, state in enumerate([state0, state1]):
|
945 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
946 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from .utils import *
|
9 |
from .log_utils import build_logger
|
10 |
from .constants import IMAGE_DIR, VIDEO_DIR
|
11 |
+
import imageio
|
12 |
|
13 |
ig_logger = build_logger("gradio_web_server_image_generation", "gr_web_image_generation.log") # ig = image generation, loggers for single model direct chat
|
14 |
igm_logger = build_logger("gradio_web_server_image_generation_multi", "gr_web_image_generation_multi.log") # igm = image generation multi, loggers for side-by-side and battle
|
|
|
106 |
|
107 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
108 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
109 |
+
if state.model_name.startswith('fal'):
|
110 |
+
r = requests.get(state.output)
|
111 |
+
with open(output_file, 'wb') as outfile:
|
112 |
+
outfile.write(r.content)
|
113 |
+
else:
|
114 |
+
print("======== video shape: ========")
|
115 |
+
print(state.output.shape)
|
116 |
+
imageio.mimwrite(output_file, state.output, fps=8, quality=9)
|
117 |
save_video_file_on_log_server(output_file)
|
118 |
|
119 |
|
|
|
132 |
for state in states:
|
133 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
134 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
135 |
+
if state.model_name.startswith('fal'):
|
136 |
+
r = requests.get(state.output)
|
137 |
+
with open(output_file, 'wb') as outfile:
|
138 |
+
outfile.write(r.content)
|
139 |
+
else:
|
140 |
+
print("======== video shape: ========")
|
141 |
+
print(state.output.shape)
|
142 |
+
imageio.mimwrite(output_file, state.output, fps=8, quality=9)
|
143 |
save_video_file_on_log_server(output_file)
|
144 |
|
145 |
|
|
|
810 |
state.output = generated_video
|
811 |
state.model_name = model_name
|
812 |
|
813 |
+
# yield state, generated_video
|
814 |
|
815 |
finish_tstamp = time.time()
|
816 |
|
|
|
830 |
|
831 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
832 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
833 |
+
if model_name.startswith('fal'):
|
834 |
+
r = requests.get(state.output)
|
835 |
+
with open(output_file, 'wb') as outfile:
|
836 |
+
outfile.write(r.content)
|
837 |
+
else:
|
838 |
+
print("======== video shape: ========")
|
839 |
+
print(state.output.shape)
|
840 |
+
imageio.mimwrite(output_file, state.output, fps=8, quality=9)
|
841 |
+
|
842 |
save_video_file_on_log_server(output_file)
|
843 |
+
yield state, output_file
|
844 |
|
845 |
def generate_vgm(gen_func, state0, state1, text, model_name0, model_name1, request: gr.Request):
|
846 |
if not text:
|
|
|
866 |
state1.output = generated_video1
|
867 |
state0.model_name = model_name0
|
868 |
state1.model_name = model_name1
|
869 |
+
print("====== model name =========")
|
870 |
+
print(state0.model_name)
|
871 |
+
print(state1.model_name)
|
872 |
|
|
|
873 |
|
874 |
finish_tstamp = time.time()
|
875 |
+
|
876 |
|
877 |
with open(get_conv_log_filename(), "a") as fout:
|
878 |
data = {
|
|
|
903 |
for i, state in enumerate([state0, state1]):
|
904 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
905 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
906 |
+
print(state.model_name)
|
907 |
+
|
908 |
+
if state.model_name.startswith('fal'):
|
909 |
+
r = requests.get(state.output)
|
910 |
+
with open(output_file, 'wb') as outfile:
|
911 |
+
outfile.write(r.content)
|
912 |
+
else:
|
913 |
+
print("======== video shape: ========")
|
914 |
+
print(state.output)
|
915 |
+
print(state.output.shape)
|
916 |
+
imageio.mimwrite(output_file, state.output, fps=8, quality=9)
|
917 |
save_video_file_on_log_server(output_file)
|
918 |
+
yield state0, state1, f'{VIDEO_DIR}/generation/{state0.conv_id}.mp4', f'{VIDEO_DIR}/generation/{state1.conv_id}.mp4'
|
919 |
|
920 |
|
921 |
def generate_vgm_annoy(gen_func, state0, state1, text, model_name0, model_name1, request: gr.Request):
|
|
|
938 |
state0.model_name = model_name0
|
939 |
state1.model_name = model_name1
|
940 |
|
941 |
+
# yield state0, state1, generated_video0, generated_video1, \
|
942 |
+
# gr.Markdown(f"### Model A: {model_name0}"), gr.Markdown(f"### Model B: {model_name1}")
|
943 |
|
944 |
finish_tstamp = time.time()
|
945 |
# logger.info(f"===output===: {output}")
|
|
|
973 |
for i, state in enumerate([state0, state1]):
|
974 |
output_file = f'{VIDEO_DIR}/generation/{state.conv_id}.mp4'
|
975 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
976 |
+
if state.model_name.startswith('fal'):
|
977 |
+
r = requests.get(state.output)
|
978 |
+
with open(output_file, 'wb') as outfile:
|
979 |
+
outfile.write(r.content)
|
980 |
+
else:
|
981 |
+
print("======== video shape: ========")
|
982 |
+
print(state.output.shape)
|
983 |
+
imageio.mimwrite(output_file, state.output, fps=8, quality=9)
|
984 |
+
save_video_file_on_log_server(output_file)
|
985 |
+
|
986 |
+
yield state0, state1, f'{VIDEO_DIR}/generation/{state0.conv_id}.mp4', f'{VIDEO_DIR}/generation/{state1.conv_id}.mp4', \
|
987 |
+
gr.Markdown(f"### Model A: {model_name0}"), gr.Markdown(f"### Model B: {model_name1}")
|