wenhuchen commited on
Commit
1599f4c
Β·
1 Parent(s): d82f40a

update the wrong registration information for T2VTurbo and adding back VC2

Browse files
arena_elo/video_generation_model_info.json CHANGED
@@ -31,7 +31,7 @@
31
  },
32
  "StableVideoDiffusion": {
33
  "Link": "https://fal.ai/models/fal-ai/fast-svd/text-to-video/api",
34
- "License": "stable-video-diffusion-nc-community",
35
  "Organization": "Stability AI"
36
  },
37
  "T2VTurbo": {
 
31
  },
32
  "StableVideoDiffusion": {
33
  "Link": "https://fal.ai/models/fal-ai/fast-svd/text-to-video/api",
34
+ "License": "SVD-nc-community",
35
  "Organization": "Stability AI"
36
  },
37
  "T2VTurbo": {
model/model_registry.py CHANGED
@@ -258,15 +258,6 @@ register_model_info(
258
  "AnimateDiff Turbo is a lightning version of AnimateDiff.",
259
  )
260
 
261
- """
262
- register_model_info(
263
- ["videogenhub_LaVie_generation"],
264
- "LaVie",
265
- "https://github.com/Vchitect/LaVie",
266
- "LaVie is a video generation model with cascaded latent diffusion models.",
267
- )
268
-
269
-
270
  register_model_info(
271
  ["videogenhub_VideoCrafter2_generation"],
272
  "VideoCrafter2",
@@ -274,6 +265,13 @@ register_model_info(
274
  "VideoCrafter2 is a T2V model that disentangling motion from appearance.",
275
  )
276
 
 
 
 
 
 
 
 
277
  register_model_info(
278
  ["videogenhub_ModelScope_generation"],
279
  "ModelScope",
@@ -303,7 +301,7 @@ register_model_info(
303
  )
304
 
305
  register_model_info(
306
- ["fal_T2VTurbo_generation"],
307
  "T2V-Turbo",
308
  "https://github.com/Ji4chenLi/t2v-turbo",
309
  "Video Consistency Model with Mixed Reward Feedback.",
 
258
  "AnimateDiff Turbo is a lightning version of AnimateDiff.",
259
  )
260
 
 
 
 
 
 
 
 
 
 
261
  register_model_info(
262
  ["videogenhub_VideoCrafter2_generation"],
263
  "VideoCrafter2",
 
265
  "VideoCrafter2 is a T2V model that disentangling motion from appearance.",
266
  )
267
 
268
+ """
269
+ register_model_info(
270
+ ["videogenhub_LaVie_generation"],
271
+ "LaVie",
272
+ "https://github.com/Vchitect/LaVie",
273
+ "LaVie is a video generation model with cascaded latent diffusion models.",
274
+ )
275
  register_model_info(
276
  ["videogenhub_ModelScope_generation"],
277
  "ModelScope",
 
301
  )
302
 
303
  register_model_info(
304
+ ["fal_T2VTurbo_text2video"],
305
  "T2V-Turbo",
306
  "https://github.com/Ji4chenLi/t2v-turbo",
307
  "Video Consistency Model with Mixed Reward Feedback.",
model/models/__init__.py CHANGED
@@ -18,7 +18,7 @@ IMAGE_EDITION_MODELS = ['imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZe
18
  VIDEO_GENERATION_MODELS = ['fal_AnimateDiff_text2video',
19
  'fal_AnimateDiffTurbo_text2video',
20
  #'videogenhub_LaVie_generation',
21
- #'videogenhub_VideoCrafter2_generation',
22
  #'videogenhub_ModelScope_generation',
23
  'videogenhub_CogVideoX_generation', 'videogenhub_OpenSora12_generation',
24
  #'videogenhub_OpenSora_generation',
 
18
  VIDEO_GENERATION_MODELS = ['fal_AnimateDiff_text2video',
19
  'fal_AnimateDiffTurbo_text2video',
20
  #'videogenhub_LaVie_generation',
21
+ 'videogenhub_VideoCrafter2_generation',
22
  #'videogenhub_ModelScope_generation',
23
  'videogenhub_CogVideoX_generation', 'videogenhub_OpenSora12_generation',
24
  #'videogenhub_OpenSora_generation',
serve/leaderboard.py CHANGED
@@ -22,20 +22,6 @@ basic_component_values = [None] * 6
22
  leader_component_values = [None] * 5
23
 
24
 
25
- # def make_leaderboard_md(elo_results):
26
- # leaderboard_md = f"""
27
- # # πŸ† Chatbot Arena Leaderboard
28
- # | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
29
-
30
- # This leaderboard is based on the following three benchmarks.
31
- # - [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) - a crowdsourced, randomized battle platform. We use 100K+ user votes to compute Elo ratings.
32
- # - [MT-Bench](https://arxiv.org/abs/2306.05685) - a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
33
- # - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a model's multitask accuracy on 57 tasks.
34
-
35
- # πŸ’» Code: The Arena Elo ratings are computed by this [notebook]({notebook_url}). The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. Last updated: November, 2023.
36
- # """
37
- # return leaderboard_md
38
-
39
  def make_leaderboard_md(elo_results):
40
  leaderboard_md = f"""
41
  # πŸ† GenAI-Arena Leaderboard
@@ -324,31 +310,6 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Tr
324
 
325
  leader_component_values[:] = [md, p1, p2, p3, p4]
326
 
327
- """
328
- with gr.Row():
329
- with gr.Column():
330
- gr.Markdown(
331
- "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
332
- )
333
- plot_1 = gr.Plot(p1, show_label=False)
334
- with gr.Column():
335
- gr.Markdown(
336
- "#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
337
- )
338
- plot_2 = gr.Plot(p2, show_label=False)
339
- with gr.Row():
340
- with gr.Column():
341
- gr.Markdown(
342
- "#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)"
343
- )
344
- plot_3 = gr.Plot(p3, show_label=False)
345
- with gr.Column():
346
- gr.Markdown(
347
- "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
348
- )
349
- plot_4 = gr.Plot(p4, show_label=False)
350
- """
351
-
352
  from .utils import acknowledgment_md
353
 
354
  gr.Markdown(acknowledgment_md)
 
22
  leader_component_values = [None] * 5
23
 
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  def make_leaderboard_md(elo_results):
26
  leaderboard_md = f"""
27
  # πŸ† GenAI-Arena Leaderboard
 
310
 
311
  leader_component_values[:] = [md, p1, p2, p3, p4]
312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
  from .utils import acknowledgment_md
314
 
315
  gr.Markdown(acknowledgment_md)